Bayesian Semiparametric Functional Mixed Models for Serially Correlated Functional Data, with Application to Glaucoma Data.

Wonyul Lee, Michelle F Miranda, Philip Rausch, Veerabhadran Baladandayuthapani, Massimo Fazio, J Crawford Downs, Jeffrey S Morris
Author Information
  1. Wonyul Lee: Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230.
  2. Michelle F Miranda: Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230.
  3. Philip Rausch: Department of Psychology, Institut f��r Psychologie, Humboldt-Universit��t zu Berlin, Germany.
  4. Veerabhadran Baladandayuthapani: Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230.
  5. Massimo Fazio: Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294.
  6. J Crawford Downs: Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294.
  7. Jeffrey S Morris: Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230.

Abstract

Glaucoma, a leading cause of blindness, is characterized by optic nerve damage related to intraocular pressure (IOP), but its full etiology is unknown. Researchers at UAB have devised a custom device to measure scleral strain continuously around the eye under fixed levels of IOP, which here is used to assess how strain varies around the posterior pole, with IOP, and across glaucoma risk factors such as age. The hypothesis is that scleral strain decreases with age, which could alter biomechanics of the optic nerve head and cause damage that could eventually lead to glaucoma. To evaluate this hypothesis, we adapted Bayesian Functional Mixed Models to model these complex data consisting of correlated functions on spherical scleral surface, with nonparametric age effects allowed to vary in magnitude and smoothness across the scleral surface, multi-level random effect functions to capture within-subject correlation, and functional growth curve terms to capture serial correlation across IOPs that can vary around the scleral surface. Our method yields fully Bayesian inference on the scleral surface or any aggregation or transformation thereof, and reveals interesting insights into the biomechanical etiology of glaucoma. The general modeling framework described is very flexible and applicable to many complex, high-dimensional functional data.

Keywords

References

  1. J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490 [PMID: 27019543]
  2. Biostatistics. 2013 Jul;14(3):447-61 [PMID: 23292804]
  3. J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199 [PMID: 19759841]
  4. J Comput Graph Stat. 2015 Apr 1;24(2):477-501 [PMID: 26347592]
  5. J Am Stat Assoc. 2014 Aug 1;109(507):1205-1215 [PMID: 25368436]
  6. J R Stat Soc Ser C Appl Stat. 2016 Feb;65(2):215-236 [PMID: 27546913]
  7. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189-99 [PMID: 16249498]
  8. Biometrics. 2017 Sep;73(3):999-1009 [PMID: 28072468]
  9. Biomech Model Mechanobiol. 2014 Jun;13(3):551-63 [PMID: 23896936]
  10. J R Stat Soc Ser C Appl Stat. 2020 Jan;69(1):25-46 [PMID: 31929657]
  11. J Am Stat Assoc. 2011 Sep 1;106(495):1167-1179 [PMID: 22308015]
  12. Electron J Stat. 2010;4:1022-1054 [PMID: 21743825]
  13. Stat. 2013;2(1):86-103 [PMID: 25132690]
  14. Biometrics. 2015 Mar;71(1):247-257 [PMID: 25327216]
  15. Biostatistics. 2008 Oct;9(4):686-99 [PMID: 18349036]
  16. J Am Stat Assoc. 2016;111(514):772-786 [PMID: 28018013]
  17. Stat Modelling. 2016 Apr;16(2):114-139 [PMID: 28316508]
  18. Invest Ophthalmol Vis Sci. 2012 Aug 09;53(9):5326-33 [PMID: 22700704]
  19. Ann Appl Stat. 2014;8(4):2175-2202 [PMID: 25663955]
  20. Neuroimage. 2018 Nov 1;181:501-512 [PMID: 30057352]
  21. J Glaucoma. 2008 Jun-Jul;17(4):318-28 [PMID: 18552618]
  22. Biometrics. 2015 Sep;71(3):563-74 [PMID: 25787146]
  23. Biometrics. 1982 Dec;38(4):963-74 [PMID: 7168798]
  24. Stat Modelling. 2017 Feb;17(1-2):59-85 [PMID: 28736502]
  25. Stat (Int Stat Inst). 2015;4(1):212-226 [PMID: 26594358]
  26. Biomed Opt Express. 2012 Mar 1;3(3):407-17 [PMID: 22435090]
  27. J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469 [PMID: 22679339]
  28. J Comput Graph Stat. 2011;20(4):852-873 [PMID: 25960627]
  29. Ann Appl Stat. 2011 Jan 1;5(2A):894-923 [PMID: 22408711]

Grants

  1. P30 CA016672/NCI NIH HHS
  2. R01 CA160736/NCI NIH HHS
  3. R01 EY018926/NEI NIH HHS
  4. P30 CA023108/NCI NIH HHS
  5. R01 CA194391/NCI NIH HHS
  6. R01 CA178744/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0FunctionalscleralBayesiandatasurfaceGlaucomaIOPstrainaroundacrossglaucomaageDatacauseopticnervedamageetiologyhypothesisMixedModelscomplexfunctionseffectsvarycapturecorrelationfunctionalmodelsleadingblindnesscharacterizedrelatedintraocularpressurefullunknownResearchersUABdevisedcustomdevicemeasurecontinuouslyeyefixedlevelsusedassessvariesposteriorpoleriskfactorsdecreasesalterbiomechanicsheadeventuallyleadevaluateadaptedmodelconsistingcorrelatedsphericalnonparametricallowedmagnitudesmoothnessmulti-levelrandomeffectwithin-subjectgrowthcurvetermsserialIOPscanmethodyieldsfullyinferenceaggregationtransformationthereofrevealsinterestinginsightsbiomechanicalgeneralmodelingframeworkdescribedflexibleapplicablemanyhigh-dimensionalSemiparametricSeriallyCorrelatedApplicationanalysismixedregressionLongitudinalNonparametricSmoothingSplinesSphericalWavelets

Similar Articles

Cited By (11)