Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing.

Ian R McCracken, Richard S Taylor, Fatma O Kok, Fernando de la Cuesta, Ross Dobie, Beth E P Henderson, Joanne C Mountford, Axelle Caudrillier, Neil C Henderson, Chris P Ponting, Andrew H Baker
Author Information
  1. Ian R McCracken: Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
  2. Richard S Taylor: Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
  3. Fatma O Kok: Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
  4. Fernando de la Cuesta: Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
  5. Ross Dobie: Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK.
  6. Beth E P Henderson: Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK.
  7. Joanne C Mountford: Scottish National Blood Transfusion Service, Edinburgh EH14 4BE, UK.
  8. Axelle Caudrillier: Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
  9. Neil C Henderson: Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK.
  10. Chris P Ponting: MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
  11. Andrew H Baker: Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.

Abstract

AIMS: Pluripotent stem cell-derived endothelial cell products possess therapeutic potential in ischaemic vascular disease. However, the factors that drive endothelial differentiation from pluripotency and cellular specification are largely unknown. The aims of this study were to use single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape and cellular dynamics of directed differentiation of human embryonic stem cell-derived endothelial cells (hESC-EC) and to compare these cells to mature endothelial cells from diverse vascular beds.
METHODS AND RESULTS: A highly efficient directed 8-day differentiation protocol was used to generate a hESC-derived endothelial cell product (hESC-ECP), in which 66% of cells co-expressed CD31 and CD144. We observed largely homogeneous hESC and mesodermal populations at Days 0 and 4, respectively, followed by a rapid emergence of distinct endothelial and mesenchymal populations. Pseudotime trajectory identified transcriptional signatures of endothelial commitment and maturation during the differentiation process. Concordance in transcriptional signatures was verified by scRNA-seq analysis using both a second hESC line RC11, and an alternative hESC-EC differentiation protocol. In total, 105 727 cells were subjected to scRNA-seq analysis. Global transcriptional comparison revealed a transcriptional architecture of hESC-EC that differs from freshly isolated and cultured human endothelial cells and from organ-specific endothelial cells.
CONCLUSION: A transcriptional bifurcation into endothelial and mesenchymal lineages was identified, as well as novel transcriptional signatures underpinning commitment and maturation. The transcriptional architecture of hESC-ECP was distinct from mature and foetal human EC.

Keywords

References

  1. J Am Soc Nephrol. 2007 Apr;18(4):1121-9 [PMID: 17314325]
  2. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  3. Cell. 2016 Jul 14;166(2):451-467 [PMID: 27419872]
  4. J Biol Chem. 2012 Feb 24;287(9):6582-91 [PMID: 22235125]
  5. Cell Mol Life Sci. 2018 Oct;75(19):3507-3520 [PMID: 29992471]
  6. Lancet. 2015 Jan 10;385(9963):117-71 [PMID: 25530442]
  7. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  8. Stem Cell Reports. 2013 Jun 04;1(1):53-65 [PMID: 24052942]
  9. Circ Res. 2018 Aug 3;123(4):443-450 [PMID: 29986945]
  10. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13742-7 [PMID: 20643952]
  11. Dev Cell. 2009 Feb;16(2):180-95 [PMID: 19217421]
  12. Circ Res. 2007 Jun 22;100(12):1686-95 [PMID: 17585076]
  13. Mol Ther. 2018 Jul 5;26(7):1669-1684 [PMID: 29703701]
  14. Development. 2012 May;139(10):1863-73 [PMID: 22510988]
  15. Nature. 2017 Jun 22;546(7659):533-538 [PMID: 28614297]
  16. Circ Res. 2018 Mar 30;122(7):1006-1020 [PMID: 29599277]
  17. Cell Stem Cell. 2010 Dec 3;7(6):718-29 [PMID: 21112566]
  18. Sci Transl Med. 2014 Mar 12;6(227):227ra34 [PMID: 24622514]
  19. BMC Genomics. 2016 Nov 21;17(1):944 [PMID: 27871224]
  20. Circulation. 2015 Nov 10;132(19):1805-15 [PMID: 26350058]
  21. Cancer Res. 2001 Sep 15;61(18):6938-44 [PMID: 11559573]
  22. Nat Cell Biol. 2015 Aug;17(8):994-1003 [PMID: 26214132]
  23. Genome Med. 2017 Aug 18;9(1):75 [PMID: 28821273]
  24. Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6072-E6078 [PMID: 28696312]
  25. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96 [PMID: 24556840]
  26. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  27. Cell Rep. 2017 Apr 4;19(1):10-19 [PMID: 28380349]
  28. Sci Rep. 2016 Nov 02;6:35680 [PMID: 27804979]
  29. Biochem Biophys Res Commun. 2008 Jul 4;371(3):475-9 [PMID: 18448073]
  30. Eur Heart J. 2015 Aug 7;36(30):2011-7 [PMID: 25990469]
  31. Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):e72-9 [PMID: 21836062]
  32. Clin Cardiol. 2011 Jul;34(7):410-4 [PMID: 21688276]
  33. Circ Res. 2018 Jul 6;123(2):138-158 [PMID: 29976684]
  34. Nat Biotechnol. 2018 Aug;36(7):597-605 [PMID: 29969440]
  35. Cell. 2018 Feb 8;172(4):650-665 [PMID: 29425488]

Grants

  1. MC_PC_15075/Medical Research Council
  2. RM/17/3/33381/British Heart Foundation
  3. MC_UU_00007/15/Medical Research Council
  4. RG/14/3/30706/British Heart Foundation
  5. /Wellcome Trust
  6. MR/K00719X/1/Medical Research Council

MeSH Term

Cell Differentiation
Embryonic Stem Cells
Endothelial Cells
Humans
Pluripotent Stem Cells
Sequence Analysis, RNA

Word Cloud

Created with Highcharts 10.0.0endothelialtranscriptionaldifferentiationcellsstemcellRNAcell-derivedsequencingscRNA-seqhumanhESC-ECsignaturesvascularcellularlargelysingle-celldynamicsdirectedmatureprotocolhESC-ECPhESCpopulationsdistinctmesenchymalPseudotimeidentifiedcommitmentmaturationanalysisrevealedarchitectureAIMS:PluripotentproductspossesstherapeuticpotentialischaemicdiseaseHoweverfactorsdrivepluripotencyspecificationunknownaimsstudyusemaplandscapeembryoniccomparediversebedsMETHODSANDRESULTS:highlyefficient8-dayusedgeneratehESC-derivedproduct66%co-expressedCD31CD144observedhomogeneousmesodermalDays04respectivelyfollowedrapidemergencetrajectoryprocessConcordanceverifiedusingsecondlineRC11alternativetotal105 727subjectedGlobalcomparisondiffersfreshlyisolatedculturedorgan-specificCONCLUSION:bifurcationlineageswellnovelunderpinningfoetalECTranscriptionalpluripotentEmbryonicEndothelialvelocitySingle-cellVascularregeneration

Similar Articles

Cited By