Co-transplantation of Epidermal Neural Crest Stem Cells and Olfactory Ensheathing Cells Repairs Sciatic Nerve Defects in Rats.

Lu Zhang, Bingcang Li, Bin Liu, Zhifang Dong
Author Information
  1. Lu Zhang: Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.
  2. Bingcang Li: State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, China.
  3. Bin Liu: Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
  4. Zhifang Dong: Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China.

Abstract

Cell-based therapy is an alternative strategy to improve outcomes of peripheral nerve injury (PNI). Epidermal neural crest stem cell (EPI-NCSC) is obtained from autologous tissue without immunological rejection, which could expand quickly and is suitable candidate for cell-based therapy. Olfactory ensheathing cell (OEC) could secrete multiple neurotrophic factors (NTFs), which is often used to repair PNI individually. However, whether the combination of EPI-NCSC and OEC have better effects on PNI repair remains unclear. Here we use EPI-NCSC and OEC co-transplantation in a rat sciatic nerve defect model to ascertain the effects and potential mechanisms of cells co-transplantation on PNI. The effect of EPI-NCSC and OEC co-transplantation on PNI is assessed by using a combination of immunohistochemistry (IHC), electrophysiological recording and neural function test. Co-transplantation of EPI-NCSC and OEC exerts a beneficial effect upon PNI such as better organized structure, nerve function recovery, and lower motoneuron apoptosis. IHC and enzyme-linked immuno sorbent assay (ELISA) further demonstrate that cells co-transplantation may improve PNI via the expression of brain derived growth factor (BDNF) and nerve growth factor (NGF) up-regulated by EPI-NCSC and OEC synergistically. Eventually, the results from this study reveal that EPI-NCSC and OEC co-transplantation effectively repairs PNI through enhancing the level of BDNF and NGF, indicating that cells co-transplantation may serve as a fruitful avenue for PNI in clinic treatment.

Keywords

References

  1. Pain. 1999 Mar;80(1-2):161-70 [PMID: 10204728]
  2. Brain Pathol. 1999 Apr;9(2):313-25 [PMID: 10219748]
  3. Glia. 2000 May;30(3):209-18 [PMID: 10756071]
  4. Brain. 2000 Aug;123 ( Pt 8):1581-8 [PMID: 10908188]
  5. Eur J Neurosci. 2000 Dec;12(12):4171-80 [PMID: 11122329]
  6. Exp Neurol. 2001 Nov;172(1):70-80 [PMID: 11681841]
  7. Exp Neurol. 2003 Apr;180(2):167-71 [PMID: 12684030]
  8. Nature. 1992 Dec 24-31;360(6406):753-5 [PMID: 1281520]
  9. Anat Sci Int. 2003 Sep;78(3):156-61 [PMID: 14527129]
  10. Nature. 1992 Dec 24-31;360(6406):757-9 [PMID: 1465147]
  11. J Biomed Mater Res A. 2004 Feb 1;68(2):286-95 [PMID: 14704970]
  12. Nat Med. 2004 Jul;10(7):712-8 [PMID: 15195086]
  13. Neuron. 2004 Jul 22;43(2):183-91 [PMID: 15260955]
  14. J Neurosci. 2004 Sep 29;24(39):8485-93 [PMID: 15456822]
  15. Eur J Neurosci. 2005 May;21(10):2624-34 [PMID: 15926911]
  16. Biomaterials. 2006 Jan;27(3):419-29 [PMID: 16137759]
  17. J Neurosci. 2005 Nov 16;25(46):10700-11 [PMID: 16291943]
  18. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17734-8 [PMID: 16314569]
  19. Histol Histopathol. 2006 Jun;21(6):633-43 [PMID: 16528674]
  20. Mol Cell Neurosci. 2006 May-Jun;32(1-2):67-81 [PMID: 16626970]
  21. Stem Cells. 2006 Dec;24(12):2692-702 [PMID: 16931771]
  22. Neurochem Int. 2007 Feb;50(3):491-8 [PMID: 17157963]
  23. Glia. 2007 Jul;55(9):897-904 [PMID: 17405147]
  24. J Hand Surg Am. 2007 Dec;32(10):1521-9 [PMID: 18070638]
  25. Neuron. 1991 Mar;6(3):359-70 [PMID: 1848079]
  26. Neuron. 1991 Aug;7(2):265-75 [PMID: 1873030]
  27. Glia. 2008 Nov 1;56(14):1498-507 [PMID: 18803319]
  28. Brain Res. 2009 Feb 13;1254:10-7 [PMID: 19059220]
  29. Neurosurg Focus. 2009 Feb;26(2):E4 [PMID: 19435444]
  30. J Clin Neurosci. 2009 Sep;16(9):1211-7 [PMID: 19596581]
  31. Mol Neurobiol. 2009 Dec;40(3):216-23 [PMID: 19728182]
  32. J Biomed Mater Res A. 2010 Sep 1;94(3):769-80 [PMID: 20336740]
  33. Science. 2010 Jun 11;328(5984):1415-8 [PMID: 20448149]
  34. Biomaterials. 2010 Sep;31(27):6987-99 [PMID: 20579725]
  35. Muscle Nerve. 2011 Apr;43(4):543-51 [PMID: 21305567]
  36. Stem Cell Rev. 2011 Nov;7(4):799-814 [PMID: 21455606]
  37. Exp Neurol. 2011 Jun;229(2):460-70 [PMID: 21458449]
  38. J Neurosci. 2012 Apr 4;32(14):5002-9 [PMID: 22492055]
  39. J Neurochem. 2012 Aug;122(3):501-11 [PMID: 22607199]
  40. Mol Cell Neurosci. 2012 May;50(1):103-12 [PMID: 22735691]
  41. Mol Neurobiol. 2012 Oct;46(2):265-74 [PMID: 22806359]
  42. Biomaterials. 2013 Jan;34(1):100-11 [PMID: 23063298]
  43. Cell Transplant. 2013;22(11):2029-39 [PMID: 23192007]
  44. Biomaterials. 2013 Sep;34(29):7086-96 [PMID: 23791502]
  45. Biomaterials. 2014 Feb;35(5):1450-61 [PMID: 24246645]
  46. Biomaterials. 2014 Aug;35(24):6143-56 [PMID: 24818883]
  47. Sheng Wu Gong Cheng Xue Bao. 2014 Apr;30(4):605-14 [PMID: 25195250]
  48. J Mol Neurosci. 2015 Mar;55(3):760-9 [PMID: 25239519]
  49. Dev Neurosci. 1989;11(4-5):348-60 [PMID: 2676458]
  50. Neuroscience. 2016 Mar 11;317:149-61 [PMID: 26791522]
  51. Brain Res. 2017 Jan 1;1654(Pt A):43-54 [PMID: 27789279]
  52. Front Mol Neurosci. 2017 May 22;10:133 [PMID: 28588447]
  53. Plast Reconstr Surg. 1989 Jan;83(1):129-38 [PMID: 2909054]
  54. Glia. 2018 Jul;66(7):1267-1301 [PMID: 29330870]
  55. Stem Cells. 2018 May;36(5):696-708 [PMID: 29352743]
  56. Cell Transplant. 2018 Jun;27(6):867-878 [PMID: 29852748]
  57. Pain. 1988 Jan;32(1):77-88 [PMID: 3340425]
  58. Exp Neurol. 1982 Sep;77(3):634-43 [PMID: 7117467]
  59. Neuron. 1993 Mar;10(3):359-67 [PMID: 8080464]
  60. Cell. 1994 Mar 25;76(6):1001-11 [PMID: 8137419]
  61. Exp Neurol. 1996 Jan;137(1):157-73 [PMID: 8566208]
  62. Glia. 1996 Jul;17(3):217-24 [PMID: 8840163]
  63. Psychoneuroendocrinology. 1997 Nov;22(8):591-602 [PMID: 9483704]

Word Cloud

Created with Highcharts 10.0.0PNIEPI-NCSCOECco-transplantationnervecellgrowthfactorneuralcellstherapyimproveperipheralinjuryEpidermalcreststemOlfactoryensheathingrepaircombinationbettereffectseffectIHCfunctionCo-transplantationmaybrainderivedBDNFNGFCellsCell-basedalternativestrategyoutcomesobtainedautologoustissuewithoutimmunologicalrejectionexpandquicklysuitablecandidatecell-basedsecretemultipleneurotrophicfactorsNTFsoftenusedindividuallyHoweverwhetherremainsunclearuseratsciaticdefectmodelascertainpotentialmechanismsassessedusingimmunohistochemistryelectrophysiologicalrecordingtestexertsbeneficialuponorganizedstructurerecoverylowermotoneuronapoptosisenzyme-linkedimmunosorbentassayELISAdemonstrateviaexpressionup-regulatedsynergisticallyEventuallyresultsstudyrevealeffectivelyrepairsenhancinglevelindicatingservefruitfulavenueclinictreatmentNeuralCrestStemEnsheathingRepairsSciaticNerveDefectsRatsepidermalolfactory

Similar Articles

Cited By