Wet-Dry Cycling Delays the Gelation of Hyperbranched Polyesters: Implications to the Origin of Life.

Irena Mamajanov
Author Information
  1. Irena Mamajanov: Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan. irena.mamajanov@elsi.jp.

Abstract

In extant biology, biopolymers perform multiple crucial functions. The biopolymers are synthesized by enzyme-controlled biosystems that would not have been available at the earliest stages of chemical evolution and consist of correctly sequenced and/or linked monomers. Some of the abiotic "messy" polymers approximate some functions of biopolymers. Condensation polymers are an attractive search target for abiotic functional polymers since principal polymers of life are produced by condensation and since condensation allows for the accurate construction of high polymers. Herein the formation of hyperbranched polyesters that have been previously used in the construction of enzyme-like catalytic complexes is explored. The experimental setup compares between the branched polyesters prepared under mild continuous heating and the wet-dry cycling associated with environmental conditions, such as dew formation or tidal activities. The results reveal that periodic wetting during which partial hydrolysis of the polyester occurs, helps to control the chain growth and delays the gel transition, a mechanism contributing to the tar formation. Moreover, the NMR and mass spec analyses indicate that continuously dried samples contain higher quantities of crosslinked and macrocyclic products, whereas cycled systems are enriched in branched structures. Ostensibly, environmental conditions have the ability to exert a rudimentary pressure to selectively enrich the polyesterification products in polymers of different structures and properties. At the early stages of chemical evolution, in the absence of biological machinery, this example of environmental control could have been for selectivity in chemical systems. As expected in marginally controlled systems, the identification of each component of the heterogeneous system has proved challenging, but it is not crucial for drawing the conclusions.

Keywords

References

  1. J Am Chem Soc. 2003 Oct 8;125(40):12110-1 [PMID: 14518994]
  2. Acc Chem Res. 1995 Mar;28(3):109-18 [PMID: 11542502]
  3. J Mol Biol. 1968 Oct 14;37(1):151-5 [PMID: 4329391]
  4. Orig Life Evol Biosph. 2005 Jun;35(3):187-212 [PMID: 16228638]
  5. Chem Rev. 1946 Aug;39:137-97 [PMID: 21000141]
  6. Chembiochem. 2010 Jun 14;11(9):1240-3 [PMID: 20491139]
  7. Molecules. 2016 Feb 16;21(2):null [PMID: 26891288]
  8. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19171-6 [PMID: 21464292]
  9. Artif Life. 2016 Spring;22(2):138-52 [PMID: 26934091]
  10. Nature. 1996 May 2;381(6577):59-61 [PMID: 8609988]
  11. Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9871-5 [PMID: 26201989]
  12. Science. 1971 Jul 23;173(3994):340-3 [PMID: 4934577]
  13. Biochemistry. 1970 Jun 9;9(12):2477-83 [PMID: 4912484]
  14. J Org Chem. 2006 Dec 8;71(25):9503-5 [PMID: 17137382]
  15. Chem Rev. 2001 Sep;101(9):2991-3024 [PMID: 11749398]
  16. Orig Life Evol Biosph. 2014 Dec;44(4):339-43 [PMID: 25608919]
  17. Nature. 1964 Sep 26;203:1362-4 [PMID: 14207311]
  18. Chem Rev. 2014 Jan 8;114(1):285-366 [PMID: 24171674]
  19. Biomacromolecules. 2005 Nov-Dec;6(6):3166-73 [PMID: 16283742]
  20. Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109): [PMID: 29133454]
  21. Orig Life Evol Biosph. 2003 Oct;33(4-5):375-403 [PMID: 14604183]
  22. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2138-41 [PMID: 11226205]
  23. Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a002105 [PMID: 20300213]
  24. Orig Life Evol Biosph. 2015 Jun;45(1-2):123-37 [PMID: 25990933]
  25. Science. 1953 May 15;117(3046):528-9 [PMID: 13056598]
  26. Orig Life Evol Biosph. 2008 Feb;38(1):57-74 [PMID: 18008180]
  27. Science. 1959 Jul 31;130(3370):245-51 [PMID: 13668555]
  28. Adv Space Res. 1983;3(9):5-18 [PMID: 11542462]
  29. Nature. 1961 Sep 16;191:1193-4 [PMID: 13731264]
  30. Orig Life Evol Biosph. 1989;19(1):7-19 [PMID: 11536612]
  31. Science. 1971 Jun 25;172(3990):1327-9 [PMID: 17755206]
  32. J Biomed Mater Res A. 2014 May;102(5):1467-77 [PMID: 23737239]
  33. Biomacromolecules. 2006 Jun;7(6):1879-83 [PMID: 16768410]
  34. Orig Life Evol Biosph. 2006 Feb;36(1):39-63 [PMID: 16372197]
  35. Orig Life Evol Biosph. 2003 Apr;33(2):211-8 [PMID: 12967268]
  36. Chem Soc Rev. 2012 Sep 21;41(18):6138-59 [PMID: 22850803]
  37. Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109): [PMID: 29133446]
  38. Nat Commun. 2015 Oct 07;6:8385 [PMID: 26442968]

Grants

  1. 17K01943/Japan Society for the Promotion of Science
  2. WPI/Japan Society for Promotion of Science

Word Cloud

Created with Highcharts 10.0.0polymerschemicalbiopolymersevolutioncondensationformationenvironmentalsystemscrucialfunctionsstagesabioticfunctionalsincelifeconstructionhyperbranchedpolyestersbranchedwet-dryconditionspolyestercontrolproductsstructurespolymerextantbiologyperformmultiplesynthesizedenzyme-controlledbiosystemsavailableearliestconsistcorrectlysequencedand/orlinkedmonomers"messy"approximateCondensationattractivesearchtargetprincipalproducedallowsaccuratehighHereinpreviouslyusedenzyme-likecatalyticcomplexesexploredexperimentalsetupcomparespreparedmildcontinuousheatingcyclingassociateddewtidalactivitiesresultsrevealperiodicwettingpartialhydrolysisoccurshelpschaingrowthdelaysgeltransitionmechanismcontributingtarMoreoverNMRmassspecanalysesindicatecontinuouslydriedsamplescontainhigherquantitiescrosslinkedmacrocyclicwhereascycledenrichedOstensiblyabilityexertrudimentarypressureselectivelyenrichpolyesterificationdifferentpropertiesearlyabsencebiologicalmachineryexampleselectivityexpectedmarginallycontrolledidentificationcomponentheterogeneoussystemprovedchallengingdrawingconclusionsWet-DryCyclingDelaysGelationHyperbranchedPolyesters:ImplicationsOriginLifegelationpreventionorigincycle

Similar Articles

Cited By