Full observability and estimation of unknown inputs, states and parameters of nonlinear biological models.

Alejandro F Villaverde, Nikolaos Tsiantis, Julio R Banga
Author Information
  1. Alejandro F Villaverde: 1 Bioprocess Engineering Group , IIM-CSIC , Vigo , Galicia 36208 , Spain.
  2. Nikolaos Tsiantis: 1 Bioprocess Engineering Group , IIM-CSIC , Vigo , Galicia 36208 , Spain.
  3. Julio R Banga: 1 Bioprocess Engineering Group , IIM-CSIC , Vigo , Galicia 36208 , Spain.

Abstract

In this paper, we address the system identification problem in the context of biological modelling. We present and demonstrate a methodology for (i) assessing the possibility of inferring the unknown quantities in a dynamic model and (ii) effectively estimating them from output data. We introduce the term Full Input-State-Parameter Observability (FISPO) analysis to refer to the simultaneous assessment of state, input and parameter observability (note that parameter observability is also known as identifiability). This type of analysis has often remained elusive in the presence of unmeasured inputs. The method proposed in this paper can be applied to a general class of nonlinear ordinary differential equations models. We apply this approach to three models from the recent literature. First, we determine whether it is theoretically possible to infer the states, parameters and inputs, taking only the model equations into account. When this analysis detects deficiencies, we reformulate the model to make it fully observable. Then we move to numerical scenarios and apply an optimization-based technique to estimate the states, parameters and inputs. The results demonstrate the feasibility of an integrated strategy for (i) analysing the theoretical possibility of determining the states, parameters and inputs to a system and (ii) solving the practical problem of actually estimating their values.

Keywords

References

  1. IEEE Trans Biomed Eng. 2001 Jan;48(1):55-65 [PMID: 11235592]
  2. J Comput Biol. 2009 Jun;16(6):875-85 [PMID: 19522669]
  3. Ann Appl Stat. 2010 Mar 1;4(1):460-483 [PMID: 20556240]
  4. Comput Methods Programs Biomed. 2011 Nov;104(2):120-34 [PMID: 20851494]
  5. SIAM Rev Soc Ind Appl Math. 2011 Jan 1;53(1):3-39 [PMID: 21785515]
  6. PLoS One. 2011;6(11):e27755 [PMID: 22132135]
  7. Math Biosci. 2012 Sep;239(1):139-53 [PMID: 22609467]
  8. Bioinformatics. 2012 Sep 15;28(18):i529-i534 [PMID: 22962477]
  9. J R Soc Interface. 2013 Dec 04;11(91):20130505 [PMID: 24307566]
  10. Bioinformatics. 2014 May 15;30(10):1440-8 [PMID: 24463185]
  11. Bioinformatics. 2015 Nov 1;31(21):3558-60 [PMID: 26142188]
  12. Sci Rep. 2016 Feb 11;6:20772 [PMID: 26865316]
  13. J Pharmacokinet Pharmacodyn. 2016 Apr;43(2):207-21 [PMID: 26932466]
  14. Bioinformatics. 2016 Nov 1;32(21):3357-3359 [PMID: 27378288]
  15. PLoS Comput Biol. 2016 Oct 28;12(10):e1005153 [PMID: 27792726]
  16. Front Physiol. 2016 Dec 05;7:590 [PMID: 27994553]
  17. Front Bioeng Biotechnol. 2017 Apr 19;5:24 [PMID: 28470000]
  18. J R Soc Interface. 2017 Jun;14(131): [PMID: 28615495]
  19. Animal. 2018 Apr;12(4):701-712 [PMID: 29096725]
  20. Nat Commun. 2017 Nov 17;8(1):1671 [PMID: 29150615]
  21. PLoS Comput Biol. 2017 Nov 29;13(11):e1005878 [PMID: 29186132]
  22. Bioinformatics. 2018 Apr 15;34(8):1421-1423 [PMID: 29206901]
  23. Bioinformatics. 2018 Jul 15;34(14):2433-2440 [PMID: 29522196]
  24. Am J Epidemiol. 2019 Jan 1;188(1):197-205 [PMID: 30325415]
  25. Bioinformatics. 2019 Aug 15;35(16):2873-2874 [PMID: 30601937]

MeSH Term

Models, Biological
Nonlinear Dynamics
Systems Biology

Word Cloud

Created with Highcharts 10.0.0inputsobservabilitystatesparameterssystemmodelanalysisparametermodelspaperidentificationproblembiologicalmodellingdemonstratepossibilityunknowndynamiciiestimatingFullinputidentifiabilitynonlinearequationsapplyestimationaddresscontextpresentmethodologyassessinginferringquantitieseffectivelyoutputdataintroducetermInput-State-ParameterObservabilityFISPOrefersimultaneousassessmentstatenotealsoknowntypeoftenremainedelusivepresenceunmeasuredmethodproposedcanappliedgeneralclassordinarydifferentialapproachthreerecentliteratureFirstdeterminewhethertheoreticallypossibleinfertakingaccountdetectsdeficienciesreformulatemakefullyobservablemovenumericalscenariosoptimization-basedtechniqueestimateresultsfeasibilityintegratedstrategyanalysingtheoreticaldeterminingsolvingpracticalactuallyvaluesreconstruction

Similar Articles

Cited By (24)