Systems engineering the organ preservation process for transplantation.

Reinier J de Vries, Martin Yarmush, Korkut Uygun
Author Information
  1. Reinier J de Vries: Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children, Boston, MA, USA; Department of Surgery, University of Amsterdam, Amsterdam, The Netherlands.
  2. Martin Yarmush: Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children, Boston, MA, USA; Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ, USA.
  3. Korkut Uygun: Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children, Boston, MA, USA. Electronic address: kuygun@mgh.harvard.edu.

Abstract

Improving organ preservation and extending the preservation time would have game-changing effects on the current practice of organ transplantation. Machine perfusion has emerged as an improved preservation technology to expand the donor pool, assess graft viability and ensure adequate graft function. However, its efficacy in extending the preservation time is limited. Subzero organ preservation does hold the promise to significantly extend the preservation time and recent advances in cryobiology bring it closer to clinical translation. In this review, we aim to broaden the perspective in the field from a focus on these individual technologies to that of a systems engineering. This would enable the creation of a preservation process that integrates the benefits of machine perfusion with those of subzero preservation, with the ultimate goal to provide on demand availability of donor organs through organ banking.

References

  1. Nat Med. 2011 Nov 07;17(11):1391-401 [PMID: 22064429]
  2. J Surg Res. 1999 Feb;81(2):216-23 [PMID: 9927543]
  3. Lancet Respir Med. 2018 May;6(5):357-367 [PMID: 29650408]
  4. Front Pharmacol. 2017 Feb 27;8:91 [PMID: 28289389]
  5. Transfus Med Hemother. 2011;38(2):125-142 [PMID: 21566713]
  6. N Engl J Med. 2009 Jan 1;360(1):7-19 [PMID: 19118301]
  7. Am J Transplant. 2010 Feb;10(2):372-81 [PMID: 19958323]
  8. Gene Ther. 1997 Jan;4(1):55-62 [PMID: 9068796]
  9. Integr Med Res. 2017 Mar;6(1):12-18 [PMID: 28462139]
  10. Cryobiology. 1983 Feb;20(1):36-40 [PMID: 6831909]
  11. Annu Rev Biomed Eng. 2000;2:257-88 [PMID: 11701513]
  12. Rejuvenation Res. 2008 Aug;11(4):765-72 [PMID: 18729808]
  13. Nature. 2002 Jan 24;415(6870):385 [PMID: 11807540]
  14. Cryobiology. 2004 Apr;48(2):157-78 [PMID: 15094092]
  15. Curr Opin Organ Transplant. 2016 Jun;21(3):294-300 [PMID: 26945319]
  16. Liver Transpl. 2018 Apr;24(4):528-538 [PMID: 29281862]
  17. Sci Transl Med. 2017 Mar 1;9(379): [PMID: 28251904]
  18. N Engl J Med. 2011 Apr 14;364(15):1431-40 [PMID: 21488765]
  19. Curr Opin Organ Transplant. 2017 Jun;22(3):281-286 [PMID: 28266941]
  20. Ann Surg. 2010 Nov;252(5):756-64 [PMID: 21037431]
  21. PLoS Comput Biol. 2018 Jun 7;14(6):e1006145 [PMID: 29879115]
  22. Nat Biotechnol. 2002 Mar;20(3):243-9 [PMID: 11875424]
  23. Rejuvenation Res. 2006 Summer;9(2):279-91 [PMID: 16706656]
  24. J Hepatol. 2014 Apr;60(4):765-72 [PMID: 24295869]
  25. Sci Rep. 2016 Mar 03;6:22415 [PMID: 26935866]
  26. Ann Cardiothorac Surg. 2018 Jan;7(1):75-81 [PMID: 29492385]
  27. J Physiol. 1903 Apr 28;29(3):266-75 [PMID: 16992666]
  28. Curr Opin Organ Transplant. 2017 Jun;22(3):189-197 [PMID: 28379853]
  29. Sci Rep. 2017 Aug 29;7(1):9850 [PMID: 28852166]
  30. Cryobiology. 2006 Jun;52(3):347-59 [PMID: 16527262]
  31. Transpl Int. 2011 Jun;24(6):548-54 [PMID: 21332580]
  32. Curr Transplant Rep. 2018;5(1):72-81 [PMID: 29564205]
  33. HPB (Oxford). 2017 Jun;19(6):538-546 [PMID: 28351756]
  34. Am J Transplant. 2016 Oct;16(10):2932-2942 [PMID: 27129409]
  35. Transplantation. 2017 Jul;101(7):1637-1644 [PMID: 28230641]
  36. Lancet. 2015 Jun 27;385(9987):2577-84 [PMID: 25888086]
  37. PLoS One. 2011;6(12):e28518 [PMID: 22194843]
  38. Organogenesis. 2009 Jul;5(3):167-75 [PMID: 20046680]
  39. Nat Biotechnol. 2017 Sep 11;35(9):801 [PMID: 28898224]
  40. Curr Opin Organ Transplant. 2018 Jun;23(3):353-360 [PMID: 29702495]
  41. Methods Mol Biol. 2007;368:39-57 [PMID: 18080461]
  42. Technology (Singap World Sci). 2014 Mar;2(1):13 [PMID: 25035864]
  43. N Engl J Med. 2012 Feb 23;366(8):770-1 [PMID: 22356343]
  44. Curr Opin Organ Transplant. 2010 Apr;15(2):147-9 [PMID: 20351661]
  45. Urologe A. 2016 Oct;55(10):1353-1359 [PMID: 27518791]
  46. Hum Reprod. 2014 Aug;29(8):1749-63 [PMID: 24939954]
  47. Am J Transplant. 2018 Mar;18(3):737-744 [PMID: 29127685]
  48. Br J Surg. 2017 Jun;104(7):907-917 [PMID: 28394402]
  49. Nat Protoc. 2015 Mar;10(3):484-94 [PMID: 25692985]
  50. Transpl Int. 2016 Jan;29(1):88-97 [PMID: 26264867]
  51. Metabolites. 2017 Nov 13;7(4): [PMID: 29137180]
  52. Cryobiology. 2018 Aug;83:48-55 [PMID: 29908947]
  53. Int J Artif Organs. 2013 Nov;36(11):775-80 [PMID: 24338652]
  54. Urology. 2002 Aug;60(2 Suppl 1):40-9 [PMID: 12206847]
  55. Transpl Int. 2015 Jun;28(6):700-7 [PMID: 24797796]
  56. Symp Soc Exp Biol. 1987;41:363-78 [PMID: 3332492]
  57. Metab Eng. 2009 Jul-Sep;11(4-5):274-83 [PMID: 19508897]
  58. Natl Vital Stat Rep. 2012 Oct 10;61(6):1-51 [PMID: 24984457]
  59. Nature. 2018 May;557(7703):50-56 [PMID: 29670285]
  60. Comput Chem Eng. 2014 Dec 4;71:665-671 [PMID: 25506103]
  61. Nat Med. 2014 Jul;20(7):790-3 [PMID: 24973919]
  62. Cryo Letters. 2014 Jul-Aug;35(4):345-55 [PMID: 25282503]
  63. ACS Biomater Sci Eng. 2018 Aug 13;4(8):3006-3015 [PMID: 31544149]
  64. Exp Clin Transplant. 2012 Apr;10(2):87-100 [PMID: 22432750]
  65. Am J Transplant. 2014 Jun;14(6):1400-9 [PMID: 24758155]
  66. Nat Biotechnol. 2017 Jun 7;35(6):530-542 [PMID: 28591112]
  67. N Engl J Med. 2011 Oct 6;365(14):1359-60 [PMID: 21991976]
  68. Surgery. 1973 Aug;74(2):181-9 [PMID: 4577804]
  69. Am J Transplant. 2016 Nov;16(11):3235-3245 [PMID: 27192971]

Grants

  1. R01 DK096075/NIDDK NIH HHS
  2. R01 DK107875/NIDDK NIH HHS
  3. R01 DK114506/NIDDK NIH HHS

MeSH Term

Humans
Organ Preservation
Perfusion
Tissue Donors

Word Cloud

Created with Highcharts 10.0.0preservationorgantimeextendingtransplantationperfusiondonorgraftengineeringprocessImprovinggame-changingeffectscurrentpracticeMachineemergedimprovedtechnologyexpandpoolassessviabilityensureadequatefunctionHoweverefficacylimitedSubzeroholdpromisesignificantlyextendrecentadvancescryobiologybringcloserclinicaltranslationreviewaimbroadenperspectivefieldfocusindividualtechnologiessystemsenablecreationintegratesbenefitsmachinesubzeroultimategoalprovidedemandavailabilityorgansbankingSystems

Similar Articles

Cited By