Skp1 isoforms are differentially modified by a dual function prolyl 4-hydroxylase/N-acety lglucosaminyltransferase in a plant pathogen.

Hanke van der Wel, Elisabet Gas-Pascual, Christopher M West
Author Information
  1. Hanke van der Wel: Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
  2. Elisabet Gas-Pascual: Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
  3. Christopher M West: Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.

Abstract

Skp1 is hydroxylated by an O2-dependent prolyl hydroxylase (PhyA) that contributes to O2-sensing in the social amoeba Dictyostelium and the mammalian pathogen Toxoplasma gondii. HO-Skp1 is subject to glycosylation and the resulting pentasaccharide affects Skp1 conformation in a way that influences association of Skp1 with F-box proteins, and potentially the assembly of E3(SCF) ubiquitin ligase complexes that mediate the polyubiquitination of target proteins that are degraded in the 26S-proteasome. To investigate the conservation and specificity of these modifications, we analyzed proteins from the oomycete Pythium ultimum, an important crop plant pathogen. Putative coding sequences for Pythium's predicted PhyA and first glycosyltransferase in the predicted five-enzyme pathway, a GlcNAc-transferase (Gnt1), predict a bifunctional enzyme (Phgt) that, when expressed in Dictyostelium, rescued a knockout of phyA but not gnt1. Though recombinant Phgt was also unable to glycosylate Dictyostelium HO-Skp1, it could hydrolyze UDP-GlcNAc and modify a synthetic hydroxypeptide from Dictyostelium Skp1. Pythium encodes two highly similar Skp1 isoforms, but only Skp1A was efficiently hydroxylated and glycosylated in vitro. While kinetic analysis revealed no evidence for processive processing of Skp1, the physical linkage of the two activities implies dedication to Skp1 in vivo. These findings indicate a widespread occurrence of the Skp1 modification pathway across protist phylogeny, suggest that both Gnt1 and PhyA are specific for Skp1 and indicate that the second Skp1 provides a bypass mechanism for O2-regulation in Pythium and other protists that conserve this gene.

Keywords

References

  1. J Biol Chem. 1995 Feb 17;270(7):3022-30 [PMID: 7852383]
  2. Annu Rev Biochem. 2018 Jun 20;87:585-620 [PMID: 29494239]
  3. J Biol Chem. 1999 Dec 17;274(51):36392-402 [PMID: 10593934]
  4. J Biol Chem. 2012 Jan 13;287(3):2006-16 [PMID: 22128189]
  5. J Biol Chem. 2002 Nov 29;277(48):46527-34 [PMID: 12244067]
  6. J Biol Chem. 2016 Feb 26;291(9):4268-80 [PMID: 26719340]
  7. Trends Parasitol. 2018 Sep;34(9):759-771 [PMID: 30078701]
  8. J Biol Chem. 2012 Jul 20;287(30):25098-110 [PMID: 22648409]
  9. J Biol Chem. 2005 Apr 15;280(15):14645-55 [PMID: 15705570]
  10. Curr Opin Struct Biol. 2019 Jun;56:204-212 [PMID: 31128470]
  11. Biochemistry. 2018 Feb 6;57(5):511-515 [PMID: 29251491]
  12. J Biol Chem. 2017 Nov 17;292(46):18897-18915 [PMID: 28928219]
  13. Glycobiology. 2009 Aug;19(8):918-33 [PMID: 19468051]
  14. Annu Rev Microbiol. 2015;69:463-85 [PMID: 26332089]
  15. Genome Biol. 2010;11(7):R73 [PMID: 20626842]
  16. Curr Opin Microbiol. 2015 Aug;26:41-7 [PMID: 25988702]
  17. Glycobiology. 2017 Mar 1;27(3):206-212 [PMID: 28177478]
  18. Development. 2007 Sep;134(18):3349-58 [PMID: 17699611]
  19. Biochim Biophys Acta. 2004 Nov 29;1695(1-3):133-70 [PMID: 15571813]
  20. Mol Cell Proteomics. 2015 Jan;14(1):66-80 [PMID: 25341530]
  21. Appl Biochem Biotechnol. 2013 Oct;171(3):583-9 [PMID: 23807489]
  22. Biochemistry. 2011 Mar 15;50(10):1700-13 [PMID: 21247092]
  23. Plasmid. 2009 Mar;61(2):110-8 [PMID: 19063918]
  24. Gene. 1997 Oct 24;200(1-2):1-10 [PMID: 9373134]
  25. Dev Biol. 2011 Jan 15;349(2):283-95 [PMID: 20969846]
  26. J Biol Chem. 1998 Feb 13;273(7):3932-6 [PMID: 9461578]
  27. J Biol Chem. 2002 Nov 29;277(48):46328-37 [PMID: 12244115]
  28. Annu Rev Biochem. 2009;78:399-434 [PMID: 19489725]
  29. Annu Rev Biochem. 2017 Jun 20;86:129-157 [PMID: 28375744]
  30. J Biol Chem. 2009 Oct 16;284(42):28896-904 [PMID: 19687007]
  31. J Biol Chem. 2017 Nov 10;292(45):18644-18659 [PMID: 28928220]
  32. J Biol Chem. 2002 May 24;277(21):18568-73 [PMID: 11896059]
  33. J Biol Chem. 2011 Dec 23;286(51):43701-43709 [PMID: 22045808]
  34. Biochemistry. 2014 Mar 18;53(10):1657-69 [PMID: 24506136]

Grants

  1. R01 GM037539/NIGMS NIH HHS
  2. R01 GM084383/NIGMS NIH HHS

MeSH Term

Cytoplasm
Dictyostelium
F-Box Proteins
Glucosamine
Glycosylation
Hydroxylation
N-Acetylglucosaminyltransferases
Oxygen
Prolyl Hydroxylases
Proteasome Endopeptidase Complex
Protein Isoforms
Pythium
S-Phase Kinase-Associated Proteins
SKP Cullin F-Box Protein Ligases
Ubiquitination

Chemicals

F-Box Proteins
Protein Isoforms
S-Phase Kinase-Associated Proteins
UDP-glucosamine
Prolyl Hydroxylases
SKP Cullin F-Box Protein Ligases
N-Acetylglucosaminyltransferases
N-acetyllactosaminide beta-1,6-N-acetylglucosaminyltransferase
Proteasome Endopeptidase Complex
ATP dependent 26S protease
Glucosamine
Oxygen

Word Cloud

Created with Highcharts 10.0.0Skp1DictyosteliumpathogenPythiumprolylPhyAproteinsplanthydroxylatedhydroxylaseHO-Skp1E3ubiquitinligaseultimumpredictedglycosyltransferasepathwayGnt1PhgttwoisoformsindicateO2-dependentcontributesO2-sensingsocialamoebamammalianToxoplasmagondiisubjectglycosylationresultingpentasaccharideaffectsconformationwayinfluencesassociationF-boxpotentiallyassemblySCFcomplexesmediatepolyubiquitinationtargetdegraded26S-proteasomeinvestigateconservationspecificitymodificationsanalyzedoomyceteimportantcropPutativecodingsequencesPythium'sfirstfive-enzymeGlcNAc-transferasepredictbifunctionalenzymeexpressedrescuedknockoutphyAgnt1ThoughrecombinantalsounableglycosylatehydrolyzeUDP-GlcNAcmodifysynthetichydroxypeptideencodeshighlysimilarSkp1AefficientlyglycosylatedvitrokineticanalysisrevealedevidenceprocessiveprocessingphysicallinkageactivitiesimpliesdedicationvivofindingswidespreadoccurrencemodificationacrossprotistphylogenysuggestspecificsecondprovidesbypassmechanismO2-regulationprotistsconservegenedifferentiallymodifieddualfunction4-hydroxylase/N-acetylglucosaminyltransferase

Similar Articles

Cited By