Comparison of CGM-Derived Measures of Glycemic Variability Between Pancreatogenic Diabetes and Type 2 Diabetes Mellitus.

Channabasappa Shivaprasad, Yalamanchi Aiswarya, Shah Kejal, Atluri Sridevi, Biswas Anupam, Barure Ramdas, Kolla Gautham, Premchander Aarudhra
Author Information
  1. Channabasappa Shivaprasad: Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India. ORCID
  2. Yalamanchi Aiswarya: Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
  3. Shah Kejal: Department of Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
  4. Atluri Sridevi: Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
  5. Biswas Anupam: Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
  6. Barure Ramdas: Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
  7. Kolla Gautham: Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
  8. Premchander Aarudhra: Department of Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.

Abstract

BACKGROUND: To compare glycemic variability (GV) indices between patients with fibrocalculous pancreatic diabetes (FCPD) and Type 2 diabetes Mellitus (T2D) using continuous glucose monitoring (CGM).
METHODS: We measured GV indices using CGM (iPro™2 Professional CGM, Medtronic, USA) data in 61 patients each with FCPD and T2D who were matched for glycated hemoglobin A1c (HbA1c) and duration of diabetes. GlyCulator2 software was used to estimate the CGM-derived measures of GV (SD, mean amplitude of glycemic excursion [MAGE], continuous overall net glycemic action [CONGA], absolute means of daily differences [MODD], value, and coefficient of variance [%CV]), hypoglycemia (time spent below 70 mg/dL, AUC below 70 mg/dL, glycemic risk assessment diabetes equation hypoglycemia, Low Blood glucose Index), and hyperglycemia (time spent above 180 mg/dL at night [TSA > 180], AUC above 180 mg/dL [AUC > 180], glycemic risk assessment diabetes equation hyperglycemia, High Blood glucose Index [HBGI], and J index). The correlation of GV indices with HbA1c, duration of diabetes, and demographic and biochemical parameters were also assessed.
RESULTS: All the CGM-derived measures of GV (SD, MAGE, CONGA, MODD, and %CV), except value, were significantly higher in the FCPD group than in the T2D group ( < 0.05). Measures of hyperglycemia (TSA >180, AUC >180, HBGI, and J index) were significantly higher in the FCPD group than in the T2D group ( < 0.05). The measures of hypoglycemia were not significantly different between the two groups. All the hyperglycemia indices showed a positive correlation with HbA1c in both groups.
CONCLUSIONS: FCPD is associated with higher GV than is T2D. The findings of higher postprandial glycemic excursions in patients with FCPD could have potential therapeutic implications.

Keywords

References

  1. Dan Med Bull. 2010 Jul;57(7):B4163 [PMID: 20591345]
  2. Diabetes Care. 2017 Nov;40(11):1486-1493 [PMID: 28860126]
  3. Diabetes Technol Ther. 2017 May;19(S2):S12-S15 [PMID: 28541135]
  4. Endocr Rev. 2010 Apr;31(2):171-82 [PMID: 19966012]
  5. Lancet Diabetes Endocrinol. 2019 Mar;7(3):221-230 [PMID: 30115599]
  6. Diabetol Metab Syndr. 2017 Jan 13;9:4 [PMID: 28101143]
  7. Diabetes Metab Syndr Obes. 2016 Aug 25;9:311-5 [PMID: 27601927]
  8. Postgrad Med J. 2003 Nov;79(937):606-15 [PMID: 14654569]
  9. Endocrinol Diabetes Metab Case Rep. 2017 Oct 28;2017: [PMID: 29118986]
  10. Int J Mol Sci. 2014 Oct 13;15(10):18381-406 [PMID: 25314300]
  11. Arch Public Health. 2015 Sep 25;73:43 [PMID: 26413295]
  12. J Clin Endocrinol Metab. 1996 Oct;81(10):3566-72 [PMID: 8855802]
  13. Lancet Gastroenterol Hepatol. 2016 Nov;1(3):226-237 [PMID: 28404095]
  14. Horm Metab Res. 1995 Jan;27(1):41-2 [PMID: 7729793]
  15. J Diabetes Metab Disord. 2017 Nov 14;16:45 [PMID: 29164077]
  16. Diabetes Res Clin Pract. 1995 Feb;27(2):127-32 [PMID: 7607050]
  17. Diabetes Care. 2009 Oct;32(10):1901-3 [PMID: 19549736]
  18. J Diabetes Sci Technol. 2011 Mar 01;5(2):447-51 [PMID: 21527118]
  19. Arch Surg. 2009 Oct;144(10):933-7 [PMID: 19841361]
  20. Diabetes Technol Ther. 2016 Feb;18 Suppl 2:S3-S13 [PMID: 26784127]
  21. World J Diabetes. 2015 Feb 15;6(1):17-29 [PMID: 25685275]
  22. Diabetes Technol Ther. 2018 Feb;20(2):140-146 [PMID: 29293363]
  23. Diabetes Care. 2009 Mar;32(3):521-2 [PMID: 19246590]
  24. Diabetes Metab Syndr. 2019 Mar - Apr;13(2):1511-1516 [PMID: 31336514]
  25. Pol Arch Med Wewn. 2005 Oct;114(4):953-7 [PMID: 16789520]
  26. Diabet Med. 2007 Jul;24(7):753-8 [PMID: 17459094]
  27. J Assoc Physicians India. 2002 Sep;50:1130-4 [PMID: 12516694]
  28. Diabetes Care. 2011 Aug;34(8):1843-7 [PMID: 21700921]
  29. HPB (Oxford). 2013 Nov;15(11):882-92 [PMID: 23458647]
  30. Pancreatology. 2011;11(3):279-94 [PMID: 21757968]
  31. Curr Diabetes Rev. 2019;15(5):382-394 [PMID: 30648511]
  32. Pancreatology. 2011;11(2):268-76 [PMID: 21734430]
  33. Diabetes. 2017 May;66(5):1103-1110 [PMID: 28507210]
  34. Cardiovasc Diabetol. 2018 Feb 24;17(1):33 [PMID: 29477146]
  35. Diabetes Care. 1990 May;13(5):525-7 [PMID: 2190776]
  36. Diabetes Metab J. 2015 Aug;39(4):273-82 [PMID: 26301188]
  37. Diabetes Technol Ther. 2005 Dec;7(6):849-62 [PMID: 16386091]
  38. Dig Surg. 2017;34(2):142-150 [PMID: 27701159]
  39. Natl Med J India. 2002 Nov-Dec;15(6):327-31 [PMID: 12540065]

MeSH Term

Blood Glucose
Blood Glucose Self-Monitoring
Diabetes Mellitus, Type 2
Glycated Hemoglobin
Humans
Hypoglycemia

Chemicals

Blood Glucose
Glycated Hemoglobin A

Word Cloud

Created with Highcharts 10.0.0diabetesglycemicGVFCPDT2DindicesCGMhypoglycemiahyperglycemiahighergrouppatients2HbA1cmeasuresAUCsignificantlyvariabilityfibrocalculouspancreatictypeusingcontinuousdurationCGM-derivedSDvaluetimespent70 mg/dLriskassessmentequationBloodGlucoseIndex180 mg/dL>180]JindexcorrelationMAGE<005Measures>180groupsDiabetesBACKGROUND:comparemellitusglucosemonitoringMETHODS:measurediPro™2ProfessionalMedtronicUSAdata61matchedglycatedhemoglobinA1cGlyCulator2softwareusedestimatemeanamplitudeexcursion[MAGE]overallnetaction[CONGA]absolutemeansdailydifferences[MODD]coefficientvariance[%CV]Lownight[TSA[AUCHigh[HBGI]demographicbiochemicalparametersalsoassessedRESULTS:CONGAMODD%CVexceptTSAHBGIdifferenttwoshowedpositiveCONCLUSIONS:associatedfindingspostprandialexcursionspotentialtherapeuticimplicationsComparisonCGM-DerivedGlycemicVariabilityPancreatogenicTypeMellitus

Similar Articles

Cited By (12)