Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices.

Sau Yin Chin, Yukkee Cheung Poh, Anne-Céline Kohler, Jocelyn T Compton, Lauren L Hsu, Kathryn M Lau, Sohyun Kim, Benjamin W Lee, Francis Y Lee, Samuel K Sia
Author Information
  1. Sau Yin Chin: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
  2. Yukkee Cheung Poh: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
  3. Anne-Céline Kohler: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
  4. Jocelyn T Compton: Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA.
  5. Lauren L Hsu: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
  6. Kathryn M Lau: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
  7. Sohyun Kim: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
  8. Benjamin W Lee: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.
  9. Francis Y Lee: Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA.
  10. Samuel K Sia: Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA.

Abstract

Implantable microdevices often have static components rather than moving parts, and exhibit limited biocompatibility. This paper demonstrates a fast manufacturing method which can produce features in biocompatible materials down to tens of microns in scale, with intricate and composite patterns in each layer. By exploiting unique mechanical properties of hydrogels, we developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and delivery of payloads. Hydrogel components could be tuned within a wide range of mechanical and diffusive properties, and can be controlled after implantation without a sustained power supply. In a mouse model of osteosarcoma, triggering of release of doxorubicin from the device over ten days showed high treatment efficacy and low toxicity, at one-tenth of a standard systemic chemotherapy dose. Overall, this platform, called "iMEMS", enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand, in a manner that solves issues of device powering and biocompatibility.

References

  1. Cell Transplant. 1999 May-Jun;8(3):293-306 [PMID: 10442742]
  2. Nature. 2000 Apr 6;404(6778):588-90 [PMID: 10766238]
  3. J Biomed Mater Res. 2000 Sep 5;51(3):343-51 [PMID: 10880075]
  4. Cancer Treat Res. 2001;106:85-101 [PMID: 11225010]
  5. J Clin Neurophysiol. 2001 Sep;18(5):402-7 [PMID: 11709644]
  6. Biomaterials. 2002 Nov;23(22):4315-23 [PMID: 12219821]
  7. Biomaterials. 2003 May;24(11):1959-67 [PMID: 12615486]
  8. Neuro Oncol. 2003 Apr;5(2):79-88 [PMID: 12672279]
  9. Nat Rev Drug Discov. 2003 May;2(5):347-60 [PMID: 12750738]
  10. Adv Drug Deliv Rev. 2004 Sep 22;56(11):1635-47 [PMID: 15350293]
  11. Biomacromolecules. 2005 Jan-Feb;6(1):386-91 [PMID: 15638543]
  12. Eur J Cancer. 2005 Sep;41(14):2079-85 [PMID: 16115755]
  13. Clin Exp Metastasis. 2005;22(4):319-29 [PMID: 16170668]
  14. Pharm Res. 2006 May;23(5):1008-19 [PMID: 16715391]
  15. Anal Chem. 2006 Nov 1;78(21):7370-7 [PMID: 17128516]
  16. Lab Chip. 2007 May;7(5):574-9 [PMID: 17476375]
  17. J Control Release. 2007 Dec 4;124(1-2):98-105 [PMID: 17904240]
  18. Biomacromolecules. 2008 Jan;9(1):149-57 [PMID: 18072747]
  19. Biomaterials. 2008 May;29(13):2113-24 [PMID: 18261792]
  20. Pharm Res. 2008 Jul;25(7):1500-10 [PMID: 18369709]
  21. Lab Chip. 2008 Nov;8(11):1864-78 [PMID: 18941687]
  22. Biomed Microdevices. 2009 Jun;11(3):625-31 [PMID: 19169826]
  23. Lab Chip. 2009 Jun 21;9(12):1670-5 [PMID: 19495448]
  24. Cardiology. 2010;115(2):155-62 [PMID: 20016174]
  25. Ultrasonics. 2010 May;50(6):556-66 [PMID: 20031183]
  26. Eur Rev Med Pharmacol Sci. 2010 Apr;14(4):269-71 [PMID: 20496534]
  27. ACS Appl Mater Interfaces. 2010 Jul;2(7):2012-25 [PMID: 20568698]
  28. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):67-72 [PMID: 21149682]
  29. Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1890-5 [PMID: 21328664]
  30. J Bone Joint Surg Am. 2011 Apr 20;93(8):723-32 [PMID: 21508279]
  31. Nat Mater. 2011 Oct;10(10):747-52 [PMID: 21822261]
  32. Am J Med Sci. 2012 Sep;344(3):199-205 [PMID: 22222334]
  33. Biomed Microdevices. 2012 Jun;14(3):483-96 [PMID: 22273985]
  34. Sci Transl Med. 2012 Feb 22;4(122):122ra21 [PMID: 22344516]
  35. Annu Rev Chem Biomol Eng. 2012;3:421-44 [PMID: 22524507]
  36. Methods Mol Biol. 2012;887:41-7 [PMID: 22566045]
  37. Polymers (Basel). 2011 Sep 1;3(3):1377-1397 [PMID: 22577513]
  38. Biofabrication. 2012 Sep;4(3):035005 [PMID: 22914604]
  39. Ann Biomed Eng. 2013 Feb;41(2):398-407 [PMID: 23053300]
  40. Nature. 2012 Dec 20;492(7429):S60-1 [PMID: 23254975]
  41. Quant Imaging Med Surg. 2011 Dec;1(1):35-40 [PMID: 23256052]
  42. Histopathology. 2013 Feb;62(3):481-6 [PMID: 23278862]
  43. Acta Biomater. 2013 Jul;9(7):7218-26 [PMID: 23523536]
  44. Trends Biotechnol. 2013 May;31(5):287-94 [PMID: 23582470]
  45. Nat Commun. 2013;4:2257 [PMID: 23907294]
  46. Lab Chip. 2014 Jan 21;14(2):294-301 [PMID: 24220675]
  47. J Control Release. 2014 Mar 10;177:51-63 [PMID: 24394377]
  48. Soft Matter. 2014 Mar 7;10(9):1337-48 [PMID: 24651405]
  49. Br J Cancer. 2014 Aug 12;111(4):708-15 [PMID: 24921912]
  50. Biomed Eng Online. 2014 Jun 20;13:79 [PMID: 24950601]
  51. Biomater Sci. 2014 Jun 1;2(6):839-902 [PMID: 25045519]
  52. ACS Appl Mater Interfaces. 2015 Feb 11;7(5):3398-405 [PMID: 25594664]
  53. Science. 2015 Mar 20;347(6228):1349-52 [PMID: 25780246]
  54. Nature. 2015 May 28;521(7553):467-75 [PMID: 26017446]
  55. J Biomed Mater Res A. 2016 Feb;104(2):544-52 [PMID: 26238392]
  56. Biotechnol Bioeng. 2016 Apr;113(4):870-81 [PMID: 26497172]
  57. ACS Appl Mater Interfaces. 2015 Dec 16;7(49):27040-8 [PMID: 26575336]
  58. Sci Adv. 2015 Oct 23;1(9):e1500758 [PMID: 26601312]
  59. Eur J Cancer Clin Oncol. 1983 Jan;19(1):135-9 [PMID: 6682771]
  60. J Clin Oncol. 1997 Apr;15(4):1553-9 [PMID: 9193352]

Grants

  1. R01 HL095477/NHLBI NIH HHS