Monitoring Fatigue During Intermittent Exercise With Accelerometer-Derived Metrics.

Marco Beato, Kevin L De Keijzer, Benjamin Carty, Mark Connor
Author Information
  1. Marco Beato: School of Science, Technology and Engineering, University of Suffolk, Ipswich, United Kingdom.
  2. Kevin L De Keijzer: School of Science, Technology and Engineering, University of Suffolk, Ipswich, United Kingdom.
  3. Benjamin Carty: School of Science, Technology and Engineering, University of Suffolk, Ipswich, United Kingdom.
  4. Mark Connor: Smurfit Graduate Business School, University College Dublin, Blackrock, Ireland.

Abstract

The aim of this study was to assess the sensitivity of accelerometer-derived metrics for monitoring fatigue during an intermittent exercise protocol. Fifteen university students were enrolled in the study (age 20 ± 1 years). A submaximal intermitted recovery test (Sub-IRT) with a duration of 6 min and 30 s (drill 1) was performed. In order to increase the participants' fatigue, after that, a repeated sprint protocol (1×6 maximal 20 m sprints) was performed. Following that, participants repeated the Sub-IRT (drill 2) to evaluate the external and internal training load (TL) variations related to fatigue. Apex 10 Hz global navigation satellite system (GNSS) units were used to collect the variables total distance (TD), high metabolic distance (HMD), relative velocity (RV), average metabolic power (MP), heart rate maximal (HRmax) and mean (HRmean), muscular (RPEmus) and respiratory rating of perceived exertion (RPEres), dynamic stress load (DSL), and fatigue index (FI). A Bayesian statistical approach was used. A likelihood difference (between drill 1 and drill 2) was found for the following parameters: TD (BF = 0.33, ), HMD (BF = 1.3, ), RV (BF = 0.29, ), MP (BF = 1.3, ), accelerations (BF = 1.6, ), FI (BF = 4.7, ), HRmax (BF = 2.2, ), HRmean (BF = 4.3, ), RPEmus (BF = 11.6, ), RPEres (BF = 3.1, ), DSL (BF = 5.7, ), and DSL•m (BF = 4.3, ). In conclusion, this study reports that DSL, DSL•m, and FI can be valid metrics to monitor fatigue related to movement strategy during a standardized submaximal intermittent exercise protocol.

Keywords

References

  1. Med Sci Sports Exerc. 2004 Jun;36(6):1042-7 [PMID: 15179175]
  2. J Biopharm Stat. 2005;15(5):799-807 [PMID: 16078386]
  3. Res Sports Med. 2006 Jan-Mar;14(1):29-52 [PMID: 16700403]
  4. Sports Med. 2008;38(1):37-51 [PMID: 18081366]
  5. Med Sci Sports Exerc. 2010 Jan;42(1):170-8 [PMID: 20010116]
  6. Int J Sports Physiol Perform. 2011 Sep;6(3):311-21 [PMID: 21911857]
  7. J Strength Cond Res. 2013 Feb;27(2):369-74 [PMID: 22465992]
  8. Int J Sports Physiol Perform. 2014 May;9(3):457-62 [PMID: 23475154]
  9. Int J Sports Med. 2013 Nov;34(11):963-8 [PMID: 23549691]
  10. Int J Sports Physiol Perform. 2015 Nov;10(8):958-64 [PMID: 25710257]
  11. Eur J Appl Physiol. 2015 Sep;115(9):1985-94 [PMID: 25963378]
  12. Int J Sports Physiol Perform. 2016 Jan;11(1):135-40 [PMID: 26114855]
  13. Int J Sports Physiol Perform. 2016 Oct;11(7):947-952 [PMID: 26816390]
  14. J Strength Cond Res. 2017 Apr;31(4):1072-1077 [PMID: 27398913]
  15. Sports Med. 2017 Mar;47(3):533-544 [PMID: 27459866]
  16. Res Sports Med. 2016 Oct-Dec;24(4):363-374 [PMID: 27547994]
  17. Int J Sports Physiol Perform. 2017 Nov 1;12(10):1285-1287 [PMID: 28253042]
  18. Sports Med. 2017 Nov;47(11):2135-2142 [PMID: 28283992]
  19. Biol Sport. 2017 Sep;34(3):227-231 [PMID: 29158614]
  20. Res Sports Med. 2018 Apr-Jun;26(2):244-250 [PMID: 29363348]
  21. Med Sci Sports Exerc. 2018 Oct;50(10):2166-2176 [PMID: 29683920]
  22. Appl Physiol Nutr Metab. 2018 Nov;43(11):1166-1175 [PMID: 29701482]
  23. Sports Med. 2018 Dec;48(12):2695-2702 [PMID: 29740792]
  24. J Strength Cond Res. 2018 Oct;32(10):2831-2837 [PMID: 30052603]
  25. Front Physiol. 2018 Aug 07;9:1011 [PMID: 30131704]
  26. Front Physiol. 2018 Sep 21;9:1288 [PMID: 30298015]
  27. Sports Med. 1998 Oct;26(4):217-38 [PMID: 9820922]

Word Cloud

Created with Highcharts 10.0.0BF=1fatigue3drill2studyprotocol6DSLFI4metricsintermittentexercise20submaximalSub-IRTperformedrepeatedmaximaltrainingloadrelateduseddistanceTDmetabolicHMDRVMPHRmaxHRmeanRPEmusRPEres07DSL•maimassesssensitivityaccelerometer-derivedmonitoringFifteenuniversitystudentsenrolledage±yearsintermittedrecoverytestdurationmin30sorderincreaseparticipants'sprint1×6msprintsFollowingparticipantsevaluateexternalinternalTLvariationsApex10HzglobalnavigationsatellitesystemGNSSunitscollectvariablestotalhighrelativevelocityaveragepowerheartratemeanmuscularrespiratoryratingperceivedexertiondynamicstressindexBayesianstatisticalapproachlikelihooddifferencefoundfollowingparameters:3329accelerations115conclusionreportscanvalidmonitormovementstrategystandardizedMonitoringFatigueIntermittentExerciseAccelerometer-DerivedMetricsGPSfootballsoccerteamsports

Similar Articles

Cited By