Light-Induced Dimerization Approaches to Control Cellular Processes.

Laura Klewer, Yao-Wen Wu
Author Information
  1. Laura Klewer: Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
  2. Yao-Wen Wu: Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, 90187, Umeå, Sweden. ORCID

Abstract

Light-inducible approaches provide a means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. New expansions of the toolbox facilitate control of signal transduction, genome editing, "painting" patterns of active molecules onto cellular membranes, and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches have also seen interesting progress. Herein, an overview of optogenetic systems and emerging chemo-optogenetic systems is provided, and recent applications in tackling complex biological problems are discussed.

Keywords

References

  1. Curr Opin Cell Biol. 2014 Oct;30:112-20 [PMID: 25216352]
  2. Nat Methods. 2016 Dec;13(12):1043-1049 [PMID: 27776111]
  3. Science. 2008 Dec 5;322(5907):1535-9 [PMID: 18988809]
  4. Nat Chem Biol. 2016 Jun;12(6):425-30 [PMID: 27065233]
  5. Science. 2014 Nov 28;346(6213):1258096 [PMID: 25430774]
  6. Nat Commun. 2014 Nov 17;5:5475 [PMID: 25400104]
  7. Science. 2018 Aug 31;361(6405): [PMID: 30166458]
  8. Nat Chem Biol. 2009 Nov;5(11):827-34 [PMID: 19718042]
  9. Nat Methods. 2010 Aug;7(8):623-6 [PMID: 20562867]
  10. Nat Chem Biol. 2017 Oct;13(10):1096-1101 [PMID: 28805800]
  11. Nature. 2009 Sep 3;461(7260):104-8 [PMID: 19693014]
  12. Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4608-4611 [PMID: 28319307]
  13. Nature. 2009 Oct 15;461(7266):997-1001 [PMID: 19749742]
  14. J Am Chem Soc. 2011 Jan 12;133(1):12-4 [PMID: 21142151]
  15. Nat Rev Mol Cell Biol. 2014 Aug;15(8):551-8 [PMID: 25027655]
  16. Angew Chem Int Ed Engl. 2014 Jun 23;53(26):6720-3 [PMID: 24841150]
  17. Nat Rev Mol Cell Biol. 2016 Jan;17(1):5-15 [PMID: 26670017]
  18. Nat Commun. 2017 May 12;8:15315 [PMID: 28497787]
  19. Nature. 2015 Feb 5;518(7537):111-114 [PMID: 25561173]
  20. Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6796-6799 [PMID: 29637703]
  21. Chembiochem. 2015 Jan 19;16(2):254-61 [PMID: 25530501]
  22. Nat Biotechnol. 2002 Oct;20(10):1041-4 [PMID: 12219076]
  23. Angew Chem Int Ed Engl. 2017 May 15;56(21):5916-5920 [PMID: 28370940]
  24. J Am Chem Soc. 2015 May 6;137(17):5642-5 [PMID: 25905628]
  25. Chem Rev. 2018 Nov 14;118(21):10659-10709 [PMID: 29984995]
  26. Nat Methods. 2016 Jul;13(7):591-7 [PMID: 27159085]
  27. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8803-8 [PMID: 24889611]
  28. Pflugers Arch. 2013 Mar;465(3):409-17 [PMID: 23299847]
  29. Neuron. 2002 Jan 3;33(1):15-22 [PMID: 11779476]
  30. Neuron. 2017 Nov 1;96(3):572-603 [PMID: 29096074]
  31. Chem Rev. 2010 Jun 9;110(6):3315-36 [PMID: 20353181]
  32. Nat Methods. 2013 Mar;10(3):249-52 [PMID: 23377377]
  33. Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2768-2798 [PMID: 28521066]
  34. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7825-30 [PMID: 9223271]
  35. Annu Rev Cell Dev Biol. 2011;27:731-58 [PMID: 21819234]
  36. Nat Methods. 2017 Oct;14(10):963-966 [PMID: 28892089]
  37. Nat Biotechnol. 2015 Jul;33(7):755-60 [PMID: 26076431]
  38. Nat Methods. 2011 Sep 11;8(10):837-9 [PMID: 21909100]
  39. Science. 2008 Oct 17;322(5900):438-42 [PMID: 18927392]
  40. Nat Biotechnol. 2009 Oct;27(10):941-5 [PMID: 19801976]
  41. Chem Commun (Camb). 2015 Apr 4;51(26):5702-5 [PMID: 25716548]
  42. Nat Commun. 2013;4:1779 [PMID: 23653191]
  43. Biophys J. 2016 Sep 20;111(6):1132-1140 [PMID: 27542508]
  44. Science. 2017 Nov 3;358(6363):668-672 [PMID: 29097549]
  45. Cell. 2013 Dec 5;155(6):1422-34 [PMID: 24315106]
  46. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10049-55 [PMID: 25065762]
  47. Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4717-20 [PMID: 24677313]
  48. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):112-7 [PMID: 25535392]
  49. Science. 2018 Mar 9;359(6380): [PMID: 29590011]
  50. Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11993-11997 [PMID: 30048030]
  51. Nat Commun. 2014 Sep 18;5:4925 [PMID: 25233328]
  52. Chem Biol. 2015 May 21;22(5):671-82 [PMID: 25963241]
  53. Nat Methods. 2012 Mar 04;9(4):379-84 [PMID: 22388287]
  54. Chemistry. 2019 Sep 25;25(54):12452-12463 [PMID: 31304989]
  55. Biochemistry. 2007 Aug 14;46(32):9310-9 [PMID: 17658895]
  56. Nat Methods. 2012 Feb 12;9(3):266-9 [PMID: 22327833]
  57. Curr Biol. 2015 May 18;25(10):R407-R408 [PMID: 25989077]
  58. ACS Synth Biol. 2017 Apr 21;6(4):686-693 [PMID: 28054767]
  59. FEBS Lett. 2012 Jul 16;586(15):2097-105 [PMID: 22584056]
  60. J Am Chem Soc. 2011 Jan 26;133(3):420-3 [PMID: 21162531]
  61. ACS Chem Biol. 2018 Feb 16;13(2):443-448 [PMID: 28938067]
  62. Chem Biol. 2015 Feb 19;22(2):169-74 [PMID: 25619936]
  63. Nat Chem Biol. 2017 Jun;13(6):633-639 [PMID: 28346403]
  64. Nat Methods. 2010 Dec;7(12):973-5 [PMID: 21037589]
  65. Science. 2012 Nov 9;338(6108):810-4 [PMID: 23139335]
  66. Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2825-9 [PMID: 25586267]
  67. Curr Opin Biotechnol. 2017 Dec;48:119-126 [PMID: 28456061]
  68. Curr Opin Chem Biol. 2015 Oct;28:194-201 [PMID: 26431673]
  69. Adv Sci (Weinh). 2018 Sep 30;6(1):1800952 [PMID: 30643713]
  70. Angew Chem Int Ed Engl. 2016 May 17;55(21):6339-42 [PMID: 27101018]
  71. Trends Biotechnol. 2015 Feb;33(2):92-100 [PMID: 25529484]
  72. Nat Chem Biol. 2015 Mar;11(3):198-200 [PMID: 25664691]
  73. Nature. 2013 Aug 22;500(7463):472-476 [PMID: 23877069]
  74. J Cell Biol. 2013 May 13;201(4):631-40 [PMID: 23671313]
  75. Nat Methods. 2016 Sep;13(9):755-8 [PMID: 27427858]
  76. Nat Commun. 2015 Feb 24;6:6256 [PMID: 25708714]

Grants

  1. ChemBioAP/H2020 European Research Council
  2. /Knut och Alice Wallenbergs Stiftelse
  3. SPP1623/Deutsche Forschungsgemeinschaft
  4. 2018-04585/Vetenskapsrådet

MeSH Term

Animals
Cell Membrane
Cell Physiological Phenomena
Gene Expression Regulation
Humans
Kinetics
Light
Mutation
Optogenetics
Protein Multimerization
Proteins

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0systemscontrolbiologicalapproachesoptogeneticchemo-optogeneticinducedfacilitatecellularapplicationsdimerizationLight-inducibleprovidemeansspatialtemporalresolutionunmatchedtraditionalgeneticperturbationsRecentdevelopmentsproximitycellsrapidreversiblemanipulationhighlydynamicprocessesbecomevaluabletoolsdiverseNewexpansionstoolboxsignaltransductiongenomeediting"painting"patternsactivemoleculesontomembraneslight-inducedcellcyclecombinationlight-chemicallyalsoseeninterestingprogressHereinoverviewemergingprovidedrecenttacklingcomplexproblemsdiscussedLight-InducedDimerizationApproachesControlCellularProcesseschemo-optogeneticsoptogeneticsphotochemistryproteins

Similar Articles

Cited By