Pooled library screening with multiplexed Cpf1 library.

Jintan Liu, Sanjana Srinivasan, Chieh-Yuan Li, I-Lin Ho, Johnathon Rose, MennatAllah Shaheen, Gang Wang, Wantong Yao, Angela Deem, Chris Bristow, Traver Hart, Giulio Draetta
Author Information
  1. Jintan Liu: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. Jliu14@mdanderson.org. ORCID
  2. Sanjana Srinivasan: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  3. Chieh-Yuan Li: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  4. I-Lin Ho: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  5. Johnathon Rose: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  6. MennatAllah Shaheen: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  7. Gang Wang: Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  8. Wantong Yao: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  9. Angela Deem: Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  10. Chris Bristow: Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  11. Traver Hart: Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  12. Giulio Draetta: Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. GDraetta@mdanderson.org. ORCID

Abstract

Capitalizing on the inherent multiplexing capability of AsCpf1, we developed a multiplexed, high-throughput screening strategy that minimizes library size without sacrificing gene targeting efficiency. We demonstrated that AsCpf1 can be used for functional genomics screenings and that an AsCpf1-based multiplexed library performs similarly as compared to currently available monocistronic CRISPR/Cas9 libraries, with only one vector required for each gene. We construct the smallest whole-genome CRISPR knock-out library, Mini-human, for the human genome (n = 17,032 constructs targeting 16,977 protein-coding genes), which performs favorably compared to conventional Cas9 libraries.

References

  1. Nat Biotechnol. 2019 Mar;37(3):276-282 [PMID: 30742127]
  2. Nat Biotechnol. 2016 Feb;34(2):184-191 [PMID: 26780180]
  3. Nat Biotechnol. 2016 Aug;34(8):869-74 [PMID: 27347757]
  4. Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449 [PMID: 29735714]
  5. Nat Commun. 2017 Dec 13;8(1):2095 [PMID: 29235474]
  6. Nat Genet. 2017 Dec;49(12):1779-1784 [PMID: 29083409]
  7. Nat Methods. 2017 Feb;14(2):153-159 [PMID: 27992409]
  8. Nat Methods. 2017 Dec;14(12):1163-1166 [PMID: 29083402]
  9. Nat Methods. 2017 Jun;14(6):573-576 [PMID: 28319113]
  10. Protein Cell. 2018 Apr;9(4):380-383 [PMID: 29164491]
  11. Nat Biotechnol. 2016 Aug;34(8):863-8 [PMID: 27272384]
  12. Sci Rep. 2017 Aug 7;7(1):7384 [PMID: 28785007]
  13. Nat Biotechnol. 2016 Dec;34(12):1279-1286 [PMID: 27798563]
  14. Nature. 2014 May 22;509(7501):487-91 [PMID: 24717434]
  15. Cell. 2015 Oct 22;163(3):759-71 [PMID: 26422227]
  16. Mol Cell. 2014 May 22;54(4):698-710 [PMID: 24837679]
  17. Science. 2014 Jan 3;343(6166):84-87 [PMID: 24336571]
  18. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2544-9 [PMID: 26864203]
  19. G3 (Bethesda). 2017 Aug 7;7(8):2719-2727 [PMID: 28655737]
  20. Nat Biotechnol. 2016 Jun;34(6):631-3 [PMID: 27111720]
  21. Elife. 2016 Apr 28;5: [PMID: 27130520]
  22. Nucleic Acids Res. 2014 Oct 29;42(19):e147 [PMID: 25122746]
  23. Nucleic Acids Res. 2017 Mar 17;45(5):e28 [PMID: 27799472]
  24. Genesis. 2008 Dec;46(12):711-8 [PMID: 18821598]
  25. Nat Biotechnol. 2017 Jan;35(1):31-34 [PMID: 27918548]
  26. Genome Biol. 2018 Jun 26;19(1):80 [PMID: 29945655]
  27. Genome Biol. 2014;15(12):554 [PMID: 25476604]
  28. Nat Biotechnol. 2014 Dec;32(12):1262-7 [PMID: 25184501]
  29. Cell. 2015 Dec 3;163(6):1515-26 [PMID: 26627737]
  30. PLoS Comput Biol. 2017 Oct 16;13(10):e1005807 [PMID: 29036168]
  31. Nucleic Acids Res. 2018 Nov 2;46(19):10272-10285 [PMID: 30239882]
  32. Genome Biol. 2016 Mar 24;17:55 [PMID: 27013184]
  33. BMC Bioinformatics. 2016 Apr 16;17:164 [PMID: 27083490]
  34. Genome Biol. 2018 May 29;19(1):62 [PMID: 29843790]
  35. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3570-5 [PMID: 25733849]
  36. Nat Biotechnol. 2017 May;35(5):463-474 [PMID: 28319085]

Grants

  1. P01 CA117969/NCI NIH HHS
  2. P30 CA016672/NCI NIH HHS
  3. R01 CA218139/NCI NIH HHS
  4. R35 GM130119/NIGMS NIH HHS

MeSH Term

CRISPR-Associated Protein 9
CRISPR-Cas Systems
Clustered Regularly Interspaced Short Palindromic Repeats
Gene Editing
Gene Library
Humans
RNA, Guide, CRISPR-Cas Systems

Chemicals

RNA, Guide, CRISPR-Cas Systems
CRISPR-Associated Protein 9

Word Cloud

Created with Highcharts 10.0.0librarymultiplexedAsCpf1screeninggenetargetingperformscomparedlibrariesCapitalizinginherentmultiplexingcapabilitydevelopedhigh-throughputstrategyminimizessizewithoutsacrificingefficiencydemonstratedcanusedfunctionalgenomicsscreeningsAsCpf1-basedsimilarlycurrentlyavailablemonocistronicCRISPR/Cas9onevectorrequiredconstructsmallestwhole-genomeCRISPRknock-outMini-humanhumangenomen = 17032constructs16977protein-codinggenesfavorablyconventionalCas9PooledCpf1

Similar Articles

Cited By