Ellagic acid, a plant phenolic compound, activates cyclooxygenase-mediated prostaglandin production.

Hui Rong Wang, Hao Chen Sui, Bao Ting Zhu
Author Information
  1. Hui Rong Wang: Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China.
  2. Hao Chen Sui: School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China.
  3. Bao Ting Zhu: Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China.

Abstract

In recent years, ellagic acid (EA), a naturally-occurring phenolic compound richly contained in some of the human food sources such as and , was reported to have a number of biological effects. Based on our earlier 3D-QSAR/CoMFA models for cyclooxygenase (COX) I and II, we hypothesize that EA may have the potential to modulate the catalytic activity of COX enzymes, and this hypothesis is examined in the present study. The results from both and experiments show that EA is an activator of COX enzyme-catalyzed production of prostaglandin E2, a representative prostaglandin tested. Mechanistically, EA can activate the peroxidase active site of COX enzymes by serving as a co-substrate, presumably for the reduction of protoporphorin IX with Fe inside. The effect of EA is abrogated by the co-presence of galangin, which is known to bind to COX's peroxidase active site and thereby blocks the effect of the reducing co-substrates. In view of the known physiological functions of COX enzymes in the body, it is suggested that some of the pharmacological and/or toxicological effects of EA may result from an increased production of certain prostaglandins and their related derivatives in the body.

Keywords

References

  1. Curr Opin Struct Biol. 2001 Dec;11(6):752-60 [PMID: 11751058]
  2. J Lipid Res. 2008 Dec;49(12):2557-70 [PMID: 18660529]
  3. PLoS One. 2010 Aug 23;5(8):e12316 [PMID: 20808785]
  4. Prostaglandins Leukot Essent Fatty Acids. 2010 Jan;82(1):45-50 [PMID: 19897347]
  5. Am J Trop Med Hyg. 2017 Sep;97(3):949-957 [PMID: 28749763]
  6. J Biol Chem. 1999 Aug 13;274(33):22903-6 [PMID: 10438452]
  7. Biochem J. 1915 Jun;9(2):240-4 [PMID: 16742368]
  8. J Chromatogr A. 2005 Sep 2;1085(2):270-7 [PMID: 16106708]
  9. Carcinogenesis. 1988 Jul;9(7):1313-6 [PMID: 3383347]
  10. Oncogene. 1999 Dec 20;18(55):7908-16 [PMID: 10630643]
  11. J Biol Chem. 2010 Nov 5;285(45):34950-9 [PMID: 20810665]
  12. Emerg Infect Dis. 2012 Nov;18(11):1817-24 [PMID: 23092599]
  13. Lancet Glob Health. 2017 Apr;5(4):e383-e384 [PMID: 28153516]
  14. Nutrients. 2017 Sep 08;9(9): [PMID: 28885570]
  15. Curr Rheumatol Rep. 2007 Apr;9(1):36-43 [PMID: 17437665]
  16. BMJ. 2007 Jan 20;334(7585):120-3 [PMID: 17235089]
  17. J Comput Chem. 2003 Nov 15;24(14):1691-702 [PMID: 12964188]
  18. Lancet Glob Health. 2017 Apr;5(4):e458-e466 [PMID: 28153514]
  19. Cell Biol Toxicol. 1986 Mar;2(1):53-62 [PMID: 3267445]
  20. J Med Chem. 2007 Apr 5;50(7):1425-41 [PMID: 17341061]
  21. Cancer Lett. 1999 Mar 1;136(2):215-21 [PMID: 10355751]
  22. Sci Rep. 2020 Sep 16;10(1):15187 [PMID: 32938962]
  23. Carcinogenesis. 1990 Jan;11(1):55-61 [PMID: 2295128]
  24. J Nutr Biochem. 2005 Jun;16(6):360-7 [PMID: 15936648]
  25. J Mol Biol. 2004 Jan 9;335(2):503-18 [PMID: 14672659]
  26. Curr Pharm Des. 2004;10(6):577-88 [PMID: 14965321]
  27. JAMA. 2006 Oct 4;296(13):1633-44 [PMID: 16968831]
  28. Curr Opin Chem Biol. 2000 Oct;4(5):545-52 [PMID: 11006543]
  29. Food Chem Toxicol. 2007 Feb;45(2):328-36 [PMID: 17049706]
  30. J Chromatogr A. 2000 Sep 1;891(1):75-83 [PMID: 10999626]
  31. J Mol Graph Model. 2002 Jan;20(4):329-43 [PMID: 11858641]
  32. Eur J Pharmacol. 2021 May 15;899:174036 [PMID: 33737009]
  33. Int J Food Sci Nutr. 2014 Aug;65(5):589-93 [PMID: 24533783]
  34. Br J Pharmacol. 2019 Apr;176(8):1038-1050 [PMID: 29468666]
  35. Int J Food Sci Nutr. 2013 Nov;64(7):907-13 [PMID: 23700985]