The Role of Tryptophan-Kynurenine in Feather Pecking in Domestic Chicken Lines.

Patrick Birkl, Jacqueline Chow, Paul Forsythe, Johanna M Gostner, Joergen B Kjaer, Wolfgang A Kunze, Peter McBride, Dietmar Fuchs, Alexandra Harlander-Matauschek
Author Information
  1. Patrick Birkl: Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
  2. Jacqueline Chow: Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
  3. Paul Forsythe: Department of Medicine, Brain-Body Institute and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada.
  4. Johanna M Gostner: Division of Medical Biochemistry, Medical University Innsbruck, Biocenter, Innsbruck, Austria.
  5. Joergen B Kjaer: Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Animal Welfare and Animal Husbandry, Celle, Germany.
  6. Wolfgang A Kunze: Department of Medicine, Brain-Body Institute and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada.
  7. Peter McBride: Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
  8. Dietmar Fuchs: Division of Biological Chemistry, Medical University Innsbruck, Biocenter, Innsbruck, Austria.
  9. Alexandra Harlander-Matauschek: Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.

Abstract

Research into the role of tryptophan (TRP) breakdown away from the serotonergic to the kynurenine (KYN) pathway by stimulating the brain-endocrine-immune axis system interaction has brought new insight into potential etiologies of certain human behavioral and mental disorders. TRP is involved in inappropriate social interactions, such as feather-destructive pecking behavior (FP) in birds selected for egg laying. Therefore, our goal was to determine the effect of social disruption stress on FP and the metabolism of the amino acids TRP, phenylalanine (PHE), tyrosine (TYR), their relevant ratios, and on large neutral amino acids which are competitors with regard to their transport across the blood-brain barriers, at least in the human system, in adolescent birds selected for and against FP behavior. We used 160 laying hens selected for high (HFP) or low (LFP) FP activity and an unselected control line (UC). Ten pens with 16 individuals each (4 HFP birds; 3 LFP birds; 9 UC birds) were used. At 16 weeks of age, we disrupted the groups twice in 5 pens by mixing individuals with unfamiliar birds to induce social stress. Blood plasma was collected before and after social disruption treatments, to measure amino acid concentrations. Birds FP behavior was recorded before and after social disruption treatments. HFP birds performed significantly more FP and had lower KYN/TRP ratios. We detected significantly higher FP activity and significantly lower plasma PHE/TYR ratios and a trend to lower KYN/TRP ratios in socially disrupted compared to control pens. This might indicate that activating insults for TRP catabolism along the KYN axis in laying hens differs compared to humans and points toward the need for a more detailed analysis of regulatory mechanisms to understand the role of TRP metabolism for laying hen immune system and brain function.

Keywords

References

  1. Anim Behav. 1975 Feb;23(1):131-8 [PMID: 1155813]
  2. Br J Cancer. 2002 Jun 5;86(11):1691-6 [PMID: 12087451]
  3. Isr J Psychiatry Relat Sci. 2010;47(1):56-63 [PMID: 20686200]
  4. J Neural Transm Gen Sect. 1990;79(1-2):25-34 [PMID: 1688706]
  5. Physiol Behav. 2002 Apr 15;75(5):653-9 [PMID: 12020730]
  6. Am J Clin Nutr. 2006 Jul;84(1):143-9 [PMID: 16825688]
  7. Sci Rep. 2017 Jul 7;7(1):4855 [PMID: 28687801]
  8. Stress. 2008 May;11(3):198-209 [PMID: 18465467]
  9. Mol Psychiatry. 2000 Jan;5(1):14-21 [PMID: 10673764]
  10. Immunol Lett. 1991 Jun;28(3):207-11 [PMID: 1909303]
  11. Appl Anim Behav Sci. 2000 May 5;68(1):55-66 [PMID: 10771315]
  12. Neuromolecular Med. 2008;10(4):247-58 [PMID: 18516508]
  13. Br Poult Sci. 1972 Nov;13(6):525-47 [PMID: 4638817]
  14. Curr Opin Clin Nutr Metab Care. 2011 Jan;14(1):49-56 [PMID: 21076293]
  15. Br Poult Sci. 2000 Mar;41(1):22-8 [PMID: 10821518]
  16. Physiol Behav. 2009 Feb 16;96(2):370-3 [PMID: 19027766]
  17. PLoS One. 2016 Apr 28;11(4):e0153617 [PMID: 27124720]
  18. Psychol Bull. 2004 Jul;130(4):601-30 [PMID: 15250815]
  19. Curr Drug Metab. 2008 Sep;9(7):622-7 [PMID: 18781914]
  20. Endocrinology. 2004 Aug;145(8):3754-62 [PMID: 15142987]
  21. Trends Cogn Sci. 2011 Jan;15(1):37-46 [PMID: 21109477]
  22. Animals (Basel). 2018 Jul 11;8(7): [PMID: 29997334]
  23. Poult Sci. 2009 Sep;88(9):1800-4 [PMID: 19687262]
  24. Behav Brain Res. 2017 Jun 1;327:11-20 [PMID: 28347825]
  25. Gene. 2007 Jul 1;396(1):203-13 [PMID: 17499941]
  26. Neuropsychopharmacology. 2012 Jan;37(1):137-62 [PMID: 21918508]
  27. Psychoneuroendocrinology. 2004 Aug;29(7):961-71 [PMID: 15177713]
  28. Trends Neurosci. 2002 Mar;25(3):154-9 [PMID: 11852148]
  29. Clin Biochem. 2013 Dec;46(18):1848-51 [PMID: 24183885]
  30. Br Poult Sci. 1999 Dec;40(5):579-84 [PMID: 10670667]
  31. Science. 1972 Oct 27;178(4059):414-6 [PMID: 5077329]
  32. IUBMB Life. 2010 Sep;62(9):660-8 [PMID: 20882645]
  33. Child Adolesc Psychiatr Clin N Am. 2003 Apr;12(2):293-317, ix [PMID: 12725013]
  34. Behav Genet. 2010 Sep;40(5):715-27 [PMID: 20496162]
  35. Neurosci Biobehav Rev. 2018 Dec;95:170-188 [PMID: 30055196]
  36. Appl Anim Behav Sci. 2001 Mar 2;71(3):229-239 [PMID: 11230903]
  37. Front Vet Sci. 2019 Jul 11;6:230 [PMID: 31355217]
  38. Genes Brain Behav. 2011 Oct;10(7):747-55 [PMID: 21682845]
  39. Physiol Behav. 2017 Jun 1;175:88-96 [PMID: 28365278]
  40. Ann N Y Acad Sci. 1996 Sep 20;794:224-37 [PMID: 8853605]
  41. Poult Sci. 2008 Sep;87(9):1720-4 [PMID: 18753438]
  42. Neurochem Res. 1980 Mar;5(3):223-39 [PMID: 6154900]
  43. Int Arch Allergy Immunol. 1993;101(1):1-6 [PMID: 8499767]
  44. Animal. 2017 Mar;11(3):500-506 [PMID: 27476320]
  45. Poult Sci. 2011 Nov;90(11):2440-8 [PMID: 22010227]
  46. Poult Sci. 2002 Sep;81(9):1265-72 [PMID: 12269602]
  47. Trends Pharmacol Sci. 2013 Feb;34(2):136-43 [PMID: 23123095]
  48. Brain Struct Funct. 2011 Sep;216(3):239-54 [PMID: 21293877]
  49. Neuropsychobiology. 2017;76(2):82-88 [PMID: 29694960]
  50. Stress. 2011 May;14(3):233-46 [PMID: 21294656]
  51. Brain Behav Immun. 2002 Oct;16(5):590-5 [PMID: 12401473]
  52. Behaviour. 1974;49(3):227-67 [PMID: 4597405]
  53. J Neural Transm Suppl. 1979;(15):81-92 [PMID: 290764]

Word Cloud

Created with Highcharts 10.0.0FPbirdsTRPsocialsystembehaviorlayingratiosselecteddisruptionaminoHFPpenssignificantlylowerroletryptophanKYNaxishumanstressmetabolismacidsusedhensLFPactivitycontrolUC16individualsdisruptedplasmatreatmentsKYN/TRPcomparedimmuneResearchbreakdownawayserotonergickynureninepathwaystimulatingbrain-endocrine-immuneinteractionbroughtnewinsightpotentialetiologiescertainbehavioralmentaldisordersinvolvedinappropriateinteractionsfeather-destructivepeckingeggThereforegoaldetermineeffectphenylalaninePHEtyrosineTYRrelevantlargeneutralcompetitorsregardtransportacrossblood-brainbarriersleastadolescent160highlowunselectedlineTen439weeksagegroupstwice5mixingunfamiliarinduceBloodcollectedmeasureacidconcentrationsBirdsrecordedperformeddetectedhigherPHE/TYRtrendsociallymightindicateactivatinginsultscatabolismalongdiffershumanspointstowardneeddetailedanalysisregulatorymechanismsunderstandhenbrainfunctionRoleTryptophan-KynurenineFeatherPeckingDomesticChickenLinesIDOneopterinproblem

Similar Articles

Cited By