Quick assessment for systematic test statistic inflation/deflation due to null model misspecifications in genome-wide environment interaction studies.

Masao Ueki, Masahiro Fujii, Gen Tamiya, for Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer’s Disease Metabolomics Consortium
Author Information
  1. Masao Ueki: Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Chuo-Ku, Tokyo, Japan. ORCID
  2. Masahiro Fujii: Graduate School of Medicine, Kurume University, Kurume, Fukuoka, Japan.
  3. Gen Tamiya: Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Chuo-Ku, Tokyo, Japan.

Abstract

Gene-environment (GxE) interaction is one potential explanation for the missing heritability problem. A popular approach to genome-wide environment interaction studies (GWEIS) is based on regression models involving interactions between genetic variants and environment variables. Unfortunately, GWEIS encounters systematically inflated (or deflated) test statistics more frequently than a marginal association study. The problematic behavior may occur due to poor specification of the null model (i.e. the model without genetic effect) in GWEIS. Improved null model specification may resolve the problem, but the investigation requires many time-consuming analyses of genome-wide scans, e.g. by trying out several transformations of the phenotype. It is therefore helpful if we can predict such problematic behavior beforehand. We present a simple closed-form formula to assess problematic behavior of GWEIS under the null hypothesis of no genetic effects. It requires only phenotype, environment variables, and covariates, enabling quick identification of systematic test statistic inflation or deflation. Applied to real data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), our formula identified problematic studies from among hundreds GWEIS considering each metabolite as the environment variable in GxE interaction. Our formula is useful to quickly identify problematic GWEIS without requiring a genome-wide scan.

References

  1. Am J Epidemiol. 2017 Oct 1;186(7):753-761 [PMID: 28978193]
  2. Am J Hypertens. 2015 Mar;28(3):343-54 [PMID: 25189868]
  3. Epidemiology. 2011 Mar;22(2):257-61 [PMID: 21228699]
  4. Brain Imaging Behav. 2014 Jun;8(2):183-207 [PMID: 24092460]
  5. Nat Rev Genet. 2010 Apr;11(4):259-72 [PMID: 20212493]
  6. Biometrics. 1999 Dec;55(4):997-1004 [PMID: 11315092]
  7. Genet Epidemiol. 2018 Sep;42(6):559-570 [PMID: 29691896]
  8. Genet Epidemiol. 2002 Jan;22(1):78-93 [PMID: 11754475]
  9. Nature. 2009 Oct 8;461(7265):747-53 [PMID: 19812666]
  10. Hum Hered. 2007;63(2):111-9 [PMID: 17283440]
  11. Genet Epidemiol. 2001 Jan;20(1):4-16 [PMID: 11119293]
  12. PLoS One. 2011 May 12;6(5):e19416 [PMID: 21589913]
  13. Am J Epidemiol. 2017 Oct 1;186(7):778-786 [PMID: 28978190]
  14. Brief Bioinform. 2017 Nov 1;18(6):962-972 [PMID: 27543791]
  15. Am J Epidemiol. 2017 Oct 1;186(7):751-752 [PMID: 28978194]
  16. Nat Genet. 2004 Nov;36(11):1129-30; author reply 1131 [PMID: 15514657]
  17. Genet Epidemiol. 2016 May;40(4):268-72 [PMID: 27061411]
  18. Nat Genet. 2012 Jul 22;44(8):955-9 [PMID: 22820512]
  19. Am J Epidemiol. 2017 Oct 1;186(7):762-770 [PMID: 28978192]
  20. Int J Methods Psychiatr Res. 2018 Jun;27(2):e1608 [PMID: 29484742]
  21. Am J Epidemiol. 2017 Oct 1;186(7):771-777 [PMID: 28978191]
  22. Genet Epidemiol. 2016 Jul;40(5):404-15 [PMID: 27230302]
  23. Trends Genet. 2011 Mar;27(3):107-15 [PMID: 21216485]
  24. Genet Epidemiol. 2009 May;33(4):290-8 [PMID: 19051284]
  25. Nat Rev Genet. 2010 Jul;11(7):499-511 [PMID: 20517342]
  26. PLoS Genet. 2006 Dec;2(12):e190 [PMID: 17194218]
  27. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  28. Eur J Epidemiol. 2015 May;30(5):353-5 [PMID: 26026724]
  29. Theor Popul Biol. 2001 Nov;60(3):155-66 [PMID: 11855950]
  30. Biometrics. 2018 Jun;74(2):653-662 [PMID: 29120492]
  31. Nat Genet. 2006 Aug;38(8):904-9 [PMID: 16862161]
  32. PLoS Med. 2015 Mar 31;12(3):e1001779 [PMID: 25826379]
  33. PLoS Genet. 2011 Aug;7(8):e1002237 [PMID: 21876681]
  34. JAMA Psychiatry. 2014 Dec 1;71(12):1392-9 [PMID: 25354142]

Grants

  1. U01 AG024904/NIA NIH HHS
  2. /CIHR
  3. R01 AG046171/NIA NIH HHS
  4. RF1 AG051550/NIA NIH HHS

MeSH Term

Algorithms
Alzheimer Disease
Computer Simulation
Gene-Environment Interaction
Genome-Wide Association Study
Humans
Models, Genetic
Models, Statistical

Word Cloud

Created with Highcharts 10.0.0GWEISenvironmentproblematicinteractiongenome-widenullmodelstudiesgenetictestbehaviorformulaGxEproblemvariablesmayduespecificationewithoutrequiresphenotypesystematicstatisticGene-environmentonepotentialexplanationmissingheritabilitypopularapproachbasedregressionmodelsinvolvinginteractionsvariantsUnfortunatelyencounterssystematicallyinflateddeflatedstatisticsfrequentlymarginalassociationstudyoccurpoorieffectImprovedresolveinvestigationmanytime-consuminganalysesscansgtryingseveraltransformationsthereforehelpfulcanpredictbeforehandpresentsimpleclosed-formassesshypothesiseffectscovariatesenablingquickidentificationinflationdeflationAppliedrealdataAlzheimer'sDiseaseNeuroimagingInitiativeADNIidentifiedamonghundredsconsideringmetabolitevariableusefulquicklyidentifyrequiringscanQuickassessmentinflation/deflationmisspecifications

Similar Articles

Cited By