Skipping Breakfast Before Exercise Creates a More Negative 24-hour Energy Balance: A Randomized Controlled Trial in Healthy Physically Active Young Men.

Robert M Edinburgh, Aaron Hengist, Harry A Smith, Rebecca L Travers, James A Betts, Dylan Thompson, Jean-Philippe Walhin, Gareth A Wallis, D Lee Hamilton, Emma J Stevenson, Kevin D Tipton, Javier T Gonzalez
Author Information
  1. Robert M Edinburgh: Department for Health, University of Bath, Bath, UK.
  2. Aaron Hengist: Department for Health, University of Bath, Bath, UK.
  3. Harry A Smith: Department for Health, University of Bath, Bath, UK.
  4. Rebecca L Travers: Department for Health, University of Bath, Bath, UK.
  5. James A Betts: Department for Health, University of Bath, Bath, UK.
  6. Dylan Thompson: Department for Health, University of Bath, Bath, UK.
  7. Jean-Philippe Walhin: Department for Health, University of Bath, Bath, UK.
  8. Gareth A Wallis: School of Sport, Exercise and Rehabilitation, University of Birmingham, Birmingham, UK.
  9. D Lee Hamilton: Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK.
  10. Emma J Stevenson: Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
  11. Kevin D Tipton: Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, UK.
  12. Javier T Gonzalez: Department for Health, University of Bath, Bath, UK.

Abstract

BACKGROUND: At rest, omission of breakfast lowers daily energy intake, but also lowers energy expenditure, attenuating any effect on energy balance. The effect of breakfast omission on energy balance when exercise is prescribed is unclear.
OBJECTIVES: The aim of this study was to assess the effect on 24-h energy balance of omitting compared with consuming breakfast prior to exercise.
METHODS: Twelve healthy physically active young men (age 23 ± 3 y, body mass index 23.6 ± 2.0 kg/m2) completed 3 trials in a randomized order (separated by >1 week): a breakfast of oats and milk (431 kcal; 65 g carbohydrate, 11 g fat, 19 g protein) followed by rest (BR); breakfast before exercise (BE; 60 min cycling at 50 % peak power output); and overnight fasting before exercise (FE). The 24-h energy intake was calculated based on the food consumed for breakfast, followed by an ad libitum lunch, snacks, and dinner. Indirect calorimetry with heart-rate accelerometry was used to measure substrate utilization and 24-h energy expenditure. A [6,6-2H2]glucose infusion was used to investigate tissue-specific carbohydrate utilization.
RESULTS: The 24-h energy balance was -400 kcal (normalized 95% CI: -230, -571 kcal) for the FE trial; this was significantly lower than both the BR trial (492 kcal; normalized 95% CI: 332, 652 kcal) and the BE trial (7 kcal; normalized 95% CI: -153, 177 kcal; both P < 0.01 compared with FE). Plasma glucose utilization in FE (mainly representing liver glucose utilization) was positively correlated with energy intake compensation at lunch (r = 0.62, P = 0.03), suggesting liver carbohydrate plays a role in postexercise energy-balance regulation.
CONCLUSIONS: Neither exercise energy expenditure nor restricted energy intake via breakfast omission were completely compensated for postexercise. In healthy men, pre-exercise breakfast omission creates a more negative daily energy balance and could therefore be a useful strategy to induce a short-term energy deficit. This trial was registered at clinicaltrials.gov as NCT02258399.

Keywords

Associated Data

ClinicalTrials.gov | NCT02258399

References

  1. Eur J Clin Nutr. 2005 Apr;59(4):561-70 [PMID: 15714212]
  2. Psychon Bull Rev. 1994 Dec;1(4):476-90 [PMID: 24203555]
  3. J Appl Physiol (1985). 2007 Aug;103(2):682-92 [PMID: 17463305]
  4. Br J Nutr. 2013 Aug;110(4):721-32 [PMID: 23340006]
  5. Obes Res. 2001 Nov;9 Suppl 4:256S-262S [PMID: 11707551]
  6. Proc Nutr Soc. 2019 May;78(2):246-256 [PMID: 30348238]
  7. Br J Nutr. 2017 May;117(10):1414-1421 [PMID: 28615090]
  8. Bull Math Biol. 1976;38(06):679-93 [PMID: 990550]
  9. Am J Physiol Endocrinol Metab. 2018 Nov 1;315(5):E1062-E1074 [PMID: 30106621]
  10. Bone. 2012 Dec;51(6):990-9 [PMID: 22960044]
  11. Sports Med. 2011 Jun 1;41(6):507-21 [PMID: 21615191]
  12. Am J Clin Nutr. 2016 Mar;103(3):747-56 [PMID: 26864365]
  13. Cell Metab. 2016 Feb 9;23(2):335-43 [PMID: 26724858]
  14. J Appl Physiol (1985). 2012 Dec 1;113(11):1763-71 [PMID: 23019315]
  15. Med Sci Sports Exerc. 2009 Feb;41(2):459-71 [PMID: 19127177]
  16. Am J Clin Nutr. 2010 Nov;92(5):1009-16 [PMID: 20826629]
  17. Am J Physiol. 1978 Jan;234(1):E84-93 [PMID: 623255]
  18. Diabetes. 2015 Mar;64(3):796-807 [PMID: 25277398]
  19. Br J Nutr. 2015 Jul 14;114(1):98-107 [PMID: 26004166]
  20. Int J Sports Med. 2005 Feb;26 Suppl 1:S28-37 [PMID: 15702454]
  21. Med Sci Sports Exerc. 2014 Feb;46(2):423 [PMID: 24435073]
  22. Br J Sports Med. 2014 Oct;48(20):1472-6 [PMID: 23666018]
  23. PLoS One. 2015 Sep 08;10(9):e0137206 [PMID: 26349056]
  24. Cell. 2018 Jan 11;172(1-2):234-248.e17 [PMID: 29307489]
  25. J Nutr. 2006 Apr;136(4):1037-42 [PMID: 16549471]
  26. Med Sci Sports Exerc. 2015 Dec;47(12):2645-52 [PMID: 25970668]
  27. Am J Clin Nutr. 2014 Aug;100(2):539-47 [PMID: 24898233]
  28. J Clin Endocrinol Metab. 2009 May;94(5):1781-8 [PMID: 19223522]
  29. Gastroenterology. 2017 May;152(7):1718-1727.e3 [PMID: 28193517]
  30. J Nutr Metab. 2016;2016:1984198 [PMID: 27738523]
  31. Int J Obes (Lond). 2008 Jan;32(1):177-84 [PMID: 17848941]
  32. Physiol Behav. 1995 May;57(5):995-1000 [PMID: 7610155]
  33. Am J Physiol. 1999 Apr;276(4):E672-83 [PMID: 10198303]
  34. Br J Nutr. 2013 Jun 28;109(12):2297-307 [PMID: 23167985]
  35. J Physiol. 2004 Dec 15;561(Pt 3):871-82 [PMID: 15498802]
  36. PLoS One. 2013 May 07;8(5):e63517 [PMID: 23667629]
  37. Br J Nutr. 2016 Sep;116(5):935-43 [PMID: 27476887]
  38. Diabetologia. 2017 Jun;60(6):1076-1083 [PMID: 28299379]
  39. J Nutr. 2004 Jan;134(1):104-11 [PMID: 14704301]
  40. J Appl Physiol (1985). 2004 Jan;96(1):343-51 [PMID: 12972441]

Grants

  1. BB/R018928/1/Biotechnology and Biological Sciences Research Council
  2. MR/P002927/1/Medical Research Council

MeSH Term

Adult
Cross-Over Studies
Dietary Carbohydrates
Energy Intake
Energy Metabolism
Exercise
Fasting
Fibroblast Growth Factors
Glucose
Humans
Leptin
Liver
Male
Meals
Young Adult

Chemicals

Dietary Carbohydrates
Leptin
fibroblast growth factor 21
Fibroblast Growth Factors
Glucose

Word Cloud

Created with Highcharts 10.0.0energybreakfastkcalbalanceexerciseomissionintake24-hcarbohydrateFEutilizationtrialexpenditureeffectgnormalized95%CI:restlowersdailycomparedhealthymenfollowedBRBEfastinglunchusedsubstrateglucoseliverpostexercisemetabolismBACKGROUND:alsoattenuatingprescribedunclearOBJECTIVES:aimstudyassessomittingconsumingpriorMETHODS:Twelvephysicallyactiveyoungage23 ± 3ybodymassindex236 ± 20kg/m2completed3trialsrandomizedorderseparated>1week:oatsmilk4316511fat19protein60mincycling50%peakpoweroutputovernightcalculatedbasedfoodconsumedadlibitumsnacksdinnerIndirectcalorimetryheart-rateaccelerometrymeasure[66-2H2]glucoseinfusioninvestigatetissue-specificRESULTS:-400-230-571significantlylower4923326527-153177P < 001Plasmamainlyrepresentingpositivelycorrelatedcompensationr = 062P = 003suggestingplaysroleenergy-balanceregulationCONCLUSIONS:Neitherrestrictedviacompletelycompensatedpre-exercisecreatesnegativethereforeusefulstrategyinduceshort-termdeficitregisteredclinicaltrialsgovNCT02258399SkippingBreakfastExerciseCreatesNegative24-hourEnergyBalance:RandomizedControlledTrialHealthyPhysicallyActiveYoungMenphysicalactivity

Similar Articles

Cited By