Identifying phenological phases in strawberry using multiple change-point models.

Marc Labadie, Béatrice Denoyes, Yann Guédon
Author Information
  1. Marc Labadie: UMR BFP, INRA, Université de Bordeaux, Villenave d'Ornon, France.
  2. Béatrice Denoyes: UMR BFP, INRA, Université de Bordeaux, Villenave d'Ornon, France.
  3. Yann Guédon: UMR BFP, INRA, Université de Bordeaux, Villenave d'Ornon, France.

Abstract

Plant development studies often generate data in the form of multivariate time series, each variable corresponding to a count of newly emerged organs for a given development process. These phenological data often exhibit highly structured patterns, and the aim of this study was to identify such patterns in cultivated strawberry. Six strawberry genotypes were observed weekly for their course of emergence of flowers, leaves, and stolons during 7 months. We assumed that these phenological series take the form of successive phases, synchronous between individuals. We applied univariate multiple change-point models for the identification of flowering, vegetative development, and runnering phases, and multivariate multiple change-point models for the identification of consensus phases for these three development processes. We showed that the flowering and the runnering processes are the main determinants of the phenological pattern. On this basis, we propose a typology of the six genotypes in the form of a hierarchical classification. This study introduces a new longitudinal data modeling approach for the identification of phenological phases in plant development. The focus was on development variables but the approach can be directly extended to growth variables and to multivariate series combining growth and development variables.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6679-6684 [PMID: 29891664]
  2. Plant Biotechnol J. 2016 Sep;14(9):1852-61 [PMID: 26940366]
  3. Science. 2003 Jul 18;301(5631):334-6 [PMID: 12869752]
  4. Mol Plant. 2018 Jan 8;11(1):230-233 [PMID: 29158170]
  5. Int J Biometeorol. 2014 May;58(4):591-601 [PMID: 24458770]
  6. Front Plant Sci. 2014 Dec 02;5:666 [PMID: 25520729]
  7. Plant J. 2012 Jan;69(1):116-25 [PMID: 21895811]
  8. Ann Bot. 2007 Mar;99(3):375-407 [PMID: 17218346]
  9. Plant Cell. 2017 Sep;29(9):2168-2182 [PMID: 28874507]
  10. Ann Bot. 2015 Jan;115(1):93-105 [PMID: 25452250]
  11. Sci Rep. 2016 May 05;6:25460 [PMID: 27145698]
  12. Science. 2019 Jan 25;363(6425):409-412 [PMID: 30679374]
  13. J Exp Bot. 2016 Oct;67(19):5643-5655 [PMID: 27664957]
  14. J Exp Bot. 2013 Nov;64(14):4131-41 [PMID: 23929655]
  15. Plant Cell. 2013 Sep;25(9):3296-310 [PMID: 24038650]
  16. Bull Math Biol. 1989;51(1):39-54 [PMID: 2706400]
  17. Plant Biotechnol J. 2016 Nov;14(11):2176-2189 [PMID: 27168086]
  18. New Phytol. 2016 Jun;210(4):1466-78 [PMID: 26853434]
  19. Ann Bot. 2002 Jun;89(6):665-73 [PMID: 12102521]
  20. J Theor Biol. 2007 Oct 7;248(3):418-47 [PMID: 17631316]

MeSH Term

Fragaria
Gene Expression Regulation, Plant
Longitudinal Studies
Plant Development

Word Cloud

Created with Highcharts 10.0.0developmentphenologicalphasesdatamultiplechange-pointformmultivariateseriesstrawberrymodelsidentificationprocessesvariablesoftenpatternsstudygenotypesfloweringrunneringpatternlongitudinalapproachgrowthPlantstudiesgeneratetimevariablecorrespondingcountnewlyemergedorgansgivenprocessexhibithighlystructuredaimidentifycultivatedSixobservedweeklycourseemergenceflowersleavesstolons7monthsassumedtakesuccessivesynchronousindividualsappliedunivariatevegetativeconsensusthreeshowedmaindeterminantsbasisproposetypologysixhierarchicalclassificationintroducesnewmodelingplantfocuscandirectlyextendedcombiningIdentifyingusingFragaria×ananassaDevelopmentalanalysismodelphase

Similar Articles

Cited By (3)