What are the Main Sensor Methods for Quantifying Pesticides in Agricultural Activities? A Review.

Roy Zamora-Sequeira, Ricardo Starbird-Pérez, Oscar Rojas-Carillo, Seiling Vargas-Villalobos
Author Information
  1. Roy Zamora-Sequeira: School of Chemistry, Costa Rica Institute of Technology, Cartago 30102, Costa Rica. rzamorasequeira@ina.ac.cr. ORCID
  2. Ricardo Starbird-Pérez: School of Chemistry, Costa Rica Institute of Technology, Cartago 30102, Costa Rica.
  3. Oscar Rojas-Carillo: School of Chemistry, Universidad Nacional, Heredia 86-3000, Costa Rica.
  4. Seiling Vargas-Villalobos: Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia 86-3000, Costa Rica.

Abstract

In recent years, there has been an increase in pesticide use to improve crop production due to the growth of agricultural activities. Consequently, various pesticides have been present in the environment for an extended period of time. This review presents a general description of recent advances in the development of methods for the quantification of pesticides used in agricultural activities. Current advances focus on improving sensitivity and selectivity through the use of nanomaterials in both sensor assemblies and new biosensors. In this study, we summarize the electrochemical, optical, nano-colorimetric, piezoelectric, chemo-luminescent and fluorescent techniques related to the determination of agricultural pesticides. A brief description of each method and its applications, detection limit, purpose-which is to efficiently determine pesticides-cost and precision are considered. The main crops that are assessed in this study are bananas, although other fruits and vegetables contaminated with pesticides are also mentioned. While many studies have assessed biosensors for the determination of pesticides, the research in this area needs to be expanded to allow for a balance between agricultural activities and environmental protection.

Keywords

References

  1. Biosens Bioelectron. 2001 Jun;16(4-5):225-30 [PMID: 11390208]
  2. Analyst. 2001 Jun;126(6):798-802 [PMID: 11445940]
  3. J Pharm Biomed Anal. 2002 May 15;28(3-4):399-419 [PMID: 12008119]
  4. J Dairy Sci. 2005 Feb;88(2):553-9 [PMID: 15653520]
  5. Anal Bioanal Chem. 2005 Aug;382(8):1904-11 [PMID: 15906004]
  6. Sci Total Environ. 2006 Aug 15;367(1):418-32 [PMID: 16643988]
  7. Biosens Bioelectron. 2007 Mar 15;22(8):1593-9 [PMID: 16905305]
  8. Talanta. 2009 May 15;78(3):827-33 [PMID: 19269436]
  9. Biosens Bioelectron. 2009 May 15;24(9):2772-7 [PMID: 19269805]
  10. J Chromatogr A. 2009 May 1;1216(18):3970-6 [PMID: 19321170]
  11. Bioelectrochemistry. 2009 Jun;75(2):117-23 [PMID: 19336272]
  12. Anal Chim Acta. 2009 Nov 10;654(2):97-102 [PMID: 19854339]
  13. Talanta. 2010 Sep 15;82(4):1077-89 [PMID: 20801302]
  14. Ecotoxicol Environ Saf. 2011 Jan;74(1):117-22 [PMID: 20828821]
  15. J Agric Food Chem. 2010 Dec 8;58(23):12096-100 [PMID: 21047070]
  16. Anal Chim Acta. 2011 Jan 17;684(1-2):21-30 [PMID: 21167981]
  17. Anal Chim Acta. 2011 Sep 2;701(1):66-74 [PMID: 21763810]
  18. Sensors (Basel). 2010;10(7):7018-43 [PMID: 22163587]
  19. Anal Biochem. 2012 Oct 1;429(1):19-31 [PMID: 22759777]
  20. Food Chem. 2012 Dec 1;135(3):873-9 [PMID: 22953799]
  21. Sci Total Environ. 2012 Dec 1;440:106-14 [PMID: 23040047]
  22. Anal Chem. 2013 Jul 2;85(13):6392-7 [PMID: 23721081]
  23. Biosens Bioelectron. 2014 Feb 15;52:166-72 [PMID: 24041663]
  24. J Environ Biol. 2014 Jan;35(1):67-71 [PMID: 24579522]
  25. Biosens Bioelectron. 2014 Sep 15;59:81-8 [PMID: 24704689]
  26. J Agric Food Chem. 2014 Oct 22;62(42):10375-91 [PMID: 25265038]
  27. Appl Biochem Biotechnol. 2015 Mar;175(6):3093-119 [PMID: 25595494]
  28. J Agric Food Chem. 2015 Mar 25;63(11):2930-4 [PMID: 25751408]
  29. Biosens Bioelectron. 2015 Aug 15;70:469-81 [PMID: 25864041]
  30. Anal Chem. 2015;87(10):5395-400 [PMID: 25913282]
  31. J Hazard Mater. 2016 Mar 5;304:103-9 [PMID: 26547618]
  32. Talanta. 2016 Aug 1;155:289-304 [PMID: 27216686]
  33. Talanta. 2016 Sep 1;158:142-151 [PMID: 27343588]
  34. Anal Chem. 2016 Aug 16;88(16):8099-106 [PMID: 27412472]
  35. Front Public Health. 2016 Jul 18;4:148 [PMID: 27486573]
  36. Anal Chim Acta. 2016 Oct 19;941:94-100 [PMID: 27692383]
  37. Environ Sci Pollut Res Int. 2018 May;25(14):13270-13282 [PMID: 27757743]
  38. Food Chem. 2017 Aug 15;229:432-438 [PMID: 28372196]
  39. Sci Total Environ. 2018 Feb 1;613-614:783-791 [PMID: 28946376]
  40. Food Chem. 2018 Feb 15;241:250-257 [PMID: 28958526]
  41. Sci Total Environ. 2018 Feb 1;613-614:1250-1262 [PMID: 28962073]
  42. Int J Biol Macromol. 2018 Mar;108:32-40 [PMID: 29174355]
  43. Biosens Bioelectron. 2018 May 15;105:14-21 [PMID: 29346076]
  44. Anal Bioanal Chem. 2018 Sep;410(22):5465-5479 [PMID: 29411087]
  45. Biosens Bioelectron. 2018 May 30;106:43-49 [PMID: 29414087]
  46. Biosensors (Basel). 2018 Feb 13;8(1):null [PMID: 29438301]
  47. J Hazard Mater. 2018 Jun 5;351:80-89 [PMID: 29518655]
  48. Biosensors (Basel). 2018 Mar 22;8(2):null [PMID: 29565810]
  49. J Sci Food Agric. 2018 Oct;98(13):4845-4853 [PMID: 29574757]
  50. Mar Pollut Bull. 2018 Apr;129(1):212-221 [PMID: 29680540]
  51. Anal Chim Acta. 2018 Sep 18;1024:1-17 [PMID: 29776535]
  52. Talanta. 2018 Aug 15;186:389-396 [PMID: 29784378]
  53. Biosens Bioelectron. 2018 Oct 15;117:669-677 [PMID: 30007197]
  54. Sci Rep. 2018 Sep 3;8(1):13151 [PMID: 30177713]
  55. Sensors (Basel). 2018 Sep 06;18(9):null [PMID: 30200562]
  56. Mikrochim Acta. 2018 Sep 21;185(10):472 [PMID: 30242584]
  57. Biosens Bioelectron. 2019 Feb 1;126:346-354 [PMID: 30466052]
  58. Nanotechnology. 2019 Feb 1;30(5):055501 [PMID: 30499458]
  59. Anal Bioanal Chem. 2019 Jan;411(3):715-724 [PMID: 30535527]
  60. J Sep Sci. 2019 Feb;42(4):862-870 [PMID: 30600583]
  61. Food Chem. 2019 May 1;279:237-245 [PMID: 30611486]
  62. Mikrochim Acta. 2019 Jan 10;186(2):88 [PMID: 30631951]
  63. J Sci Food Agric. 2019 May;99(7):3687-3692 [PMID: 30666637]
  64. Molecules. 2019 Jan 24;24(3):null [PMID: 30678356]
  65. Anal Sci. 2019 Jun 10;35(6):631-637 [PMID: 30745506]
  66. J Agric Food Chem. 2019 Apr 10;67(14):4071-4079 [PMID: 30888170]
  67. J Agric Food Chem. 2019 May 8;67(18):5105-5112 [PMID: 31034223]
  68. J Sep Sci. 2019 Jul;42(14):2418-2425 [PMID: 31074562]
  69. Food Chem. 2019 Oct 15;295:64-71 [PMID: 31174807]

MeSH Term

Agriculture
Biosensing Techniques
Colorimetry
Conservation of Natural Resources
Crops, Agricultural
Electrochemical Techniques
Environmental Monitoring
Humans
Limit of Detection
Luminescent Measurements
Musa
Pesticides
Spectrometry, Fluorescence

Chemicals

Pesticides

Word Cloud

Created with Highcharts 10.0.0pesticidesagriculturalactivitiesrecentuseproductiondescriptionadvancessensorbiosensorsstudydeterminationassessedyearsincreasepesticideimprovecropduegrowthConsequentlyvariouspresentenvironmentextendedperiodtimereviewpresentsgeneraldevelopmentmethodsquantificationusedCurrentfocusimprovingsensitivityselectivitynanomaterialsassembliesnewsummarizeelectrochemicalopticalnano-colorimetricpiezoelectricchemo-luminescentfluorescenttechniquesrelatedbriefmethodapplicationsdetectionlimitpurpose-whichefficientlydeterminepesticides-costprecisionconsideredmaincropsbananasalthoughfruitsvegetablescontaminatedalsomentionedmanystudiesresearchareaneedsexpandedallowbalanceenvironmentalprotectionMainSensorMethodsQuantifyingPesticidesAgriculturalActivities?Reviewbiosensortransducers

Similar Articles

Cited By