Bayesian inference of distributed time delay in transcriptional and translational regulation.

Boseung Choi, Yu-Yu Cheng, Selahattin Cinar, William Ott, Matthew R Bennett, Krešimir Josić, Jae Kyoung Kim
Author Information
  1. Boseung Choi: Department of National Statistics, Korea University Sejong Campus, Sejong 30019, Korea.
  2. Yu-Yu Cheng: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
  3. Selahattin Cinar: Department of Mathematics, University of Houston, Houston, TX 77204, USA.
  4. William Ott: Department of Mathematics, University of Houston, Houston, TX 77204, USA.
  5. Matthew R Bennett: Department of Biosciences, Rice University, Houston, TX 77005, USA.
  6. Krešimir Josić: Department of Mathematics, University of Houston, Houston, TX 77204, USA.
  7. Jae Kyoung Kim: Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

Abstract

MOTIVATION: Advances in experimental and imaging techniques have allowed for unprecedented insights into the dynamical processes within individual cells. However, many facets of intracellular dynamics remain hidden, or can be measured only indirectly. This makes it challenging to reconstruct the regulatory networks that govern the biochemical processes underlying various cell functions. Current estimation techniques for inferring reaction rates frequently rely on marginalization over unobserved processes and states. Even in simple systems this approach can be computationally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates. Therefore we will require alternative approaches to efficiently uncover the interactions in complex biochemical networks.
RESULTS: We propose a Bayesian inference framework based on replacing uninteresting or unobserved reactions with time delays. Although the resulting models are non-Markovian, recent results on stochastic systems with random delays allow us to rigorously obtain expressions for the likelihoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advantages, and potential pitfalls, of the approach using a birth-death model with both synthetic and experimental data, and show that we can robustly infer model parameters using a relatively small number of measurements. We demonstrate how to do so even when only the relative molecule count within the cell is measured, as in the case of fluorescence microscopy.
AVAILABILITY AND IMPLEMENTATION: Accompanying code in R is available at https://github.com/cbskust/DDE_BD.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

References

  1. Biophys J. 2001 Dec;81(6):3116-36 [PMID: 11720979]
  2. Biometrics. 2005 Sep;61(3):781-8 [PMID: 16135029]
  3. BMC Bioinformatics. 2012 May 01;13:68 [PMID: 22548918]
  4. Appl Environ Microbiol. 1998 Jun;64(6):2240-6 [PMID: 9603842]
  5. J Chem Phys. 2013 Mar 14;138(10):104114 [PMID: 23514472]
  6. PLoS One. 2012;7(11):e46835 [PMID: 23144788]
  7. Phys Rev Lett. 2013 Jun 21;110(25):250601 [PMID: 23829723]
  8. Curr Biol. 2015 Feb 2;25(3):385-391 [PMID: 25544609]
  9. Biophys J. 2014 Aug 5;107(3):783-793 [PMID: 25099817]
  10. Phys Biol. 2009 Dec 21;7(1):016003 [PMID: 20026876]
  11. ACS Synth Biol. 2017 Nov 17;6(11):1996-2002 [PMID: 28841307]
  12. PLoS One. 2014 Feb 26;9(2):e89532 [PMID: 24586851]
  13. J Chem Phys. 2007 Mar 28;126(12):124108 [PMID: 17411109]
  14. Nat Rev Genet. 2005 Jun;6(6):451-64 [PMID: 15883588]
  15. Nat Methods. 2014 Feb;11(2):197-202 [PMID: 24412977]
  16. AIChE J. 2014 Apr;60(4):1253-1268 [PMID: 27429455]
  17. Sci Rep. 2017 Dec 5;7(1):17018 [PMID: 29208922]
  18. Bioinformatics. 2019 Apr 15;35(8):1380-1387 [PMID: 30202930]
  19. Biostatistics. 2012 Jan;13(1):153-65 [PMID: 21835814]
  20. Nat Phys. 2016 Aug;12(8):762-766 [PMID: 27642362]
  21. J Math Biol. 2008 Nov;57(5):613-48 [PMID: 18449541]
  22. PLoS Comput Biol. 2006 Sep 8;2(9):e117 [PMID: 16965175]
  23. Phys Rev Lett. 2009 Feb 13;102(6):068105 [PMID: 19257639]
  24. Science. 1995 Aug 4;269(5224):650-6 [PMID: 7624793]
  25. SIAM J Appl Dyn Syst. 2016;15(3):1734-1752 [PMID: 29081723]
  26. Nature. 2013 Nov 28;503(7477):481-486 [PMID: 24256735]
  27. Nature. 2006 Feb 2;439(7076):608-11 [PMID: 16452980]
  28. Science. 2006 Mar 17;311(5767):1600-3 [PMID: 16543458]
  29. Nature. 2006 Mar 16;440(7082):358-62 [PMID: 16541077]
  30. Curr Biol. 2003 Aug 19;13(16):1398-408 [PMID: 12932323]
  31. J R Soc Interface. 2014 Apr 02;11(95):20140108 [PMID: 24694895]
  32. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):972-7 [PMID: 24395809]
  33. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15346-51 [PMID: 18832176]
  34. IET Syst Biol. 2015 Apr;9(2):64-73 [PMID: 26672148]
  35. Science. 2015 Aug 28;349(6251):986-9 [PMID: 26315440]
  36. Nature. 2008 Nov 27;456(7221):516-9 [PMID: 18971928]
  37. Cell. 2008 Oct 17;135(2):216-26 [PMID: 18957198]
  38. Science. 2005 Mar 25;307(5717):1962-5 [PMID: 15790856]
  39. Bioinformatics. 2016 May 15;32(10):1586-8 [PMID: 26787664]
  40. Cell. 2005 Dec 16;123(6):1025-36 [PMID: 16360033]
  41. J Chem Phys. 2007 Dec 7;127(21):214107 [PMID: 18067349]
  42. Biophys J. 2008 Aug;95(4):2103-15 [PMID: 18469087]
  43. Biophys J. 2006 Jul 15;91(2):759-66 [PMID: 16648159]
  44. J Chem Phys. 2014 May 28;140(20):204108 [PMID: 24880267]
  45. Nat Commun. 2018 Jan 24;9(1):345 [PMID: 29367605]
  46. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042105 [PMID: 26565166]
  47. Curr Biol. 2003 Aug 19;13(16):1409-13 [PMID: 12932324]
  48. BMC Bioinformatics. 2010 Aug 06;11:414 [PMID: 20691037]
  49. BMC Syst Biol. 2012 May 14;6:39 [PMID: 22583770]
  50. Bioinformatics. 2015 May 1;31(9):1428-35 [PMID: 25573914]
  51. Bioinformatics. 2007 Oct 1;23(19):2596-603 [PMID: 17660527]

Grants

  1. R01 GM117138/NIGMS NIH HHS

MeSH Term

Algorithms
Bayes Theorem
Biochemical Phenomena

Word Cloud

Created with Highcharts 10.0.0canprocessesmodelparametersexperimentaltechniqueswithinmeasuredchallengingnetworksbiochemicalcellreactionratesunobservedsystemsapproachefficientlyBayesianinferencetimedelaysusdelayusingdataavailableMOTIVATION:AdvancesimagingallowedunprecedentedinsightsdynamicalindividualcellsHowevermanyfacetsintracellulardynamicsremainhiddenindirectlymakesreconstructregulatorygovernunderlyingvariousfunctionsCurrentestimationinferringfrequentlyrelymarginalizationstatesEvensimplecomputationallyleadlargeuncertaintieslackrobustnessparameterestimatesThereforewillrequirealternativeapproachesuncoverinteractionscomplexRESULTS:proposeframeworkbasedreplacinguninterestingreactionsAlthoughresultingmodelsnon-MarkovianrecentresultsstochasticrandomallowrigorouslyobtainexpressionslikelihoodsturnallowsextendMCMCmethodsestimatedistributionsingle-cellassaysillustrateadvantagespotentialpitfallsbirth-deathsyntheticshowrobustlyinferrelativelysmallnumbermeasurementsdemonstrateevenrelativemoleculecountcasefluorescencemicroscopyAVAILABILITYANDIMPLEMENTATION:AccompanyingcodeRhttps://githubcom/cbskust/DDE_BDSUPPLEMENTARYINFORMATION:SupplementaryBioinformaticsonlinedistributedtranscriptionaltranslationalregulation

Similar Articles

Cited By