Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants.

Evan Mayer, Patricia Dörr de Quadros, Roberta Fulthorpe
Author Information
  1. Evan Mayer: University of Toronto Scarborough, Toronto, Ontario, Canada.
  2. Patricia Dörr de Quadros: University of Toronto Scarborough, Toronto, Ontario, Canada. ORCID
  3. Roberta Fulthorpe: University of Toronto Scarborough, Toronto, Ontario, Canada fulthorpe@utsc.utoronto.ca.

Abstract

A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of , , and and two strains of were further examined for growth promotion in , lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. strain M251 increased the total biomass and total root length of plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while strain M259 promoted shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of exhibit strain-specific plant growth-promoting effects on four different plant species.

Keywords

References

  1. Nature. 2014 Jul 17;511(7509):341-3 [PMID: 25030173]
  2. Curr Opin Biotechnol. 2014 Jun;27:30-7 [PMID: 24863894]
  3. BMC Plant Biol. 2015 Aug 12;15:195 [PMID: 26264238]
  4. Sci Rep. 2016 Feb 09;6:21329 [PMID: 26856413]
  5. Appl Environ Microbiol. 2002 May;68(5):2198-208 [PMID: 11976089]
  6. Environ Sci Pollut Res Int. 2016 Mar;23(5):3984-99 [PMID: 25758420]
  7. New Phytol. 2014 Jan;201(2):599-609 [PMID: 24117518]
  8. Plant Physiol. 1976 May;57(5):820-3 [PMID: 16659577]
  9. J Microbiol Biotechnol. 2010 Nov;20(11):1577-84 [PMID: 21124065]
  10. J Biosci Bioeng. 2015 Jun;119(6):683-93 [PMID: 25575970]
  11. Cell Microbiol. 2012 Mar;14(3):334-42 [PMID: 22168434]
  12. Plant Cell. 2002;14 Suppl:S239-49 [PMID: 12045280]
  13. Environ Sci Technol. 2008 Mar 15;42(6):2079-84 [PMID: 18409640]
  14. Front Plant Sci. 2015 Sep 14;6:700 [PMID: 26442016]
  15. Nucleic Acids Res. 2017 Jan 4;45(D1):D535-D542 [PMID: 27899627]
  16. Appl Environ Microbiol. 2004 Apr;70(4):2052-60 [PMID: 15066796]
  17. Int J Food Microbiol. 2010 Sep 1;142(3):277-85 [PMID: 20678822]
  18. Environ Pollut. 2008 Dec;156(3):1164-70 [PMID: 18490091]
  19. N Biotechnol. 2016 Jan 25;33(1):32-40 [PMID: 26255131]
  20. Microbiol Res. 2015 Dec;181:22-32 [PMID: 26640049]
  21. Plant Cell Environ. 2013 May;36(5):909-19 [PMID: 23145472]
  22. Plant Signal Behav. 2009 Aug;4(8):701-12 [PMID: 19820333]
  23. Appl Environ Microbiol. 2001 Jul;67(7):3046-52 [PMID: 11425720]
  24. PLoS One. 2016 Oct 11;11(10):e0164533 [PMID: 27727301]
  25. Front Plant Sci. 2015 Jul 01;6:491 [PMID: 26191069]
  26. Plant Cell Environ. 2006 May;29(5):909-18 [PMID: 17087474]
  27. Appl Environ Microbiol. 2005 Sep;71(9):4951-9 [PMID: 16151072]
  28. Microbiol Res. 2014 Jan 20;169(1):30-9 [PMID: 24095256]
  29. Genome Announc. 2017 Apr 27;5(17): [PMID: 28450526]
  30. Front Microbiol. 2015 Nov 18;6:1286 [PMID: 26635754]
  31. Front Microbiol. 2015 Jul 22;6:745 [PMID: 26257721]
  32. Front Microbiol. 2015 Sep 25;6:1014 [PMID: 26441937]
  33. Microb Cell Fact. 2014 May 08;13:66 [PMID: 24885352]
  34. Front Plant Sci. 2017 Feb 09;8:49 [PMID: 28232839]
  35. Microb Biotechnol. 2015 Jan;8(1):32-3 [PMID: 25545820]
  36. Funct Plant Biol. 2016 Mar;43(2):161-172 [PMID: 32480450]
  37. Can J Microbiol. 2012 Jun;58(6):788-801 [PMID: 22642843]
  38. Front Plant Sci. 2017 Apr 24;8:611 [PMID: 28484479]
  39. Environ Sci Pollut Res Int. 2015 Apr;22(7):4907-21 [PMID: 25369916]
  40. Biotechnol Lett. 2009 Feb;31(2):277-81 [PMID: 18931973]
  41. Nature. 2017 Mar 15;543(7645):328-336 [PMID: 28300100]
  42. J Appl Microbiol. 2004;96(3):473-80 [PMID: 14962127]
  43. Appl Environ Microbiol. 2017 Dec 15;84(1): [PMID: 29079619]
  44. AIMS Microbiol. 2017 May 22;3(3):354-364 [PMID: 31294166]
  45. ISME J. 2008 Dec;2(12):1221-30 [PMID: 18754043]
  46. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  47. Int J Syst Evol Microbiol. 2002 Sep;52(Pt 5):1441-1454 [PMID: 12361245]
  48. Antonie Van Leeuwenhoek. 2015 Mar;107(3):835-43 [PMID: 25566956]
  49. Cell Host Microbe. 2011 Oct 20;10(4):348-58 [PMID: 22018235]
  50. Front Microbiol. 2016 Dec 16;7:1966 [PMID: 28018305]
  51. Mol Plant Microbe Interact. 2009 Jul;22(7):763-72 [PMID: 19522558]
  52. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  53. Mol Biotechnol. 2016 Mar;58(3):149-58 [PMID: 26798073]
  54. Phytopathology. 2008 Jun;98(6):666-72 [PMID: 18944290]
  55. PLoS One. 2012;7(5):e38122 [PMID: 22675441]
  56. Mol Plant. 2011 Jul;4(4):616-25 [PMID: 21357646]
  57. Microb Ecol. 2011 Apr;61(3):606-18 [PMID: 21128071]
  58. J Appl Phycol. 2016;28:1051-1061 [PMID: 27057088]
  59. Front Microbiol. 2016 May 24;7:755 [PMID: 27252685]
  60. Nat Genet. 2018 Jan;50(1):138-150 [PMID: 29255260]
  61. Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87 [PMID: 31032519]
  62. Plant Physiol. 2007 Jun;144(2):582-7 [PMID: 17556521]

MeSH Term

Actinobacteria
Arabidopsis
Endophytes
Host Microbial Interactions
Host Specificity
Lactuca
Ocimum basilicum
Paenibacillus
Plant Roots
Rhizobium

Word Cloud

Created with Highcharts 10.0.0plantgrowthplantsgrowth-promotingstrainspromotionlettucebasilrootbacterialstrainbokchoybacteriaendophytesisolatedgrowingisolatesimprovedcomparisoncontrolfivebeneficialexaminedM251totalM259shootgeneseffectscanspeciesPlantibacterflavusArabidopsiscollectionstemtissuessoilshighlycontaminatedpetroleumhydrocarbonsscreenedcapabilitiesTwenty-sevenendophyticsignificantlyuninoculatedonetwoHost-specificobservedinoculatedincreasedbiomasslength4758timesrespectivelypromotedgenomeshowedgenomescontain70actinobacterialputativeplant-associatedinvolvedknownplant-beneficialpathwaysauxincytokininbiosynthesis1-aminocyclopropane-1-carboxylatedeaminaseproductionstudyprovidesevidencedirectdiscoverynewnecessarycontinueddevelopmentbiofertilizersenvironmentallyfriendlycost-efficientalternativesconventionalchemicalfertilizersBiofertilizerinconsistentduecomplexityplant-microbeinteractionsneutraldetrimentalotherssetuniquepetroleum-contaminatedenvironmentdiscovershowexhibitstrain-specificfourdifferentCurtobacteriumherbarumPaenibacillustaichungensisRhizobiumselenitireducensEndophytesProvideHost-SpecificGrowthPromotionthalianaBasilLettuceBokChoyPlantsendophytehostspecificitymicrobiology

Similar Articles

Cited By