Social amoebae establish a protective interface with their bacterial associates by lectin agglutination.

Timothy Farinholt, Christopher Dinh, Adam Kuspa
Author Information
  1. Timothy Farinholt: Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ORCID
  2. Christopher Dinh: Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ORCID
  3. Adam Kuspa: Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ORCID

Abstract

Both animals and amoebae use phagocytosis and DNA-based extracellular traps as anti-bacterial defense mechanisms. Whether, like animals, amoebae also use tissue-level barriers to reduce direct contact with bacteria has remained unclear. We have explored this question in the social amoeba , which forms plaques on lawns of bacteria that expand as amoebae divide and bacteria are consumed. We show that CadA, a cell adhesion protein that functions in development, is also a bacterial agglutinin that forms a protective interface at the plaque edge that limits exposure of vegetative amoebae to bacteria. This interface is important for amoebal survival when bacteria-to-amoebae ratios are high, optimizing amoebal feeding behavior, and protecting amoebae from oxidative stress. Lectins also control bacterial access to the gut epithelium of mammals to limit inflammatory processes; thus, this strategy of antibacterial defense is shared across a broad spectrum of eukaryotic taxa.

References

  1. PLoS Genet. 2013;9(12):e1004057 [PMID: 24385934]
  2. J Bacteriol. 2003 Aug;185(15):4585-92 [PMID: 12867469]
  3. J Biol Chem. 2009 Dec 25;284(52):36377-86 [PMID: 19875452]
  4. EMBO Mol Med. 2013 Oct;5(10):1465-83 [PMID: 24039130]
  5. Infect Immun. 2008 Nov;76(11):4968-77 [PMID: 18765724]
  6. Microbiology. 2006 May;152(Pt 5):1497-505 [PMID: 16622066]
  7. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13833-13838 [PMID: 27849619]
  8. Nature. 2011 Jan 20;469(7330):393-6 [PMID: 21248849]
  9. BMC Microbiol. 2014 Dec 20;14:328 [PMID: 25526662]
  10. Proc Biol Sci. 2016 Apr 27;283(1829): [PMID: 27097923]
  11. Biosci Microbiota Food Health. 2016;35(2):57-67 [PMID: 27200259]
  12. Curr Biol. 2013 May 20;23(10):862-72 [PMID: 23664307]
  13. J Microbiol. 2018 Mar;56(3):172-182 [PMID: 29492874]
  14. Differentiation. 1997 Aug;61(5):275-84 [PMID: 9342838]
  15. Carbohydr Res. 2001 Oct 15;335(4):291-6 [PMID: 11595223]
  16. Nat Struct Mol Biol. 2006 Nov;13(11):1016-22 [PMID: 17057715]
  17. Dev Biol. 1987 May;121(1):277-83 [PMID: 3569662]
  18. Science. 2008 Jun 20;320(5883):1647-51 [PMID: 18497261]
  19. Development. 2011 Jun;138(12):2487-97 [PMID: 21561987]
  20. Biochim Biophys Acta. 1965 Mar 8;97:510-22 [PMID: 14323598]
  21. Nat Prod Rep. 2018 Apr 25;35(4):336-356 [PMID: 29393944]
  22. Gut Microbes. 2014;5(6):688-95 [PMID: 25536286]
  23. Nat Rev Microbiol. 2016 Jan;14(1):20-32 [PMID: 26499895]
  24. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14528-33 [PMID: 23898207]
  25. Genet Mol Biol. 2018;41(1 suppl 1):189-197 [PMID: 29505062]
  26. Cell. 2014 Mar 27;157(1):121-41 [PMID: 24679531]
  27. Science. 2005 Mar 25;307(5717):1915-20 [PMID: 15790844]
  28. Clin Microbiol Rev. 2006 Apr;19(2):315-37 [PMID: 16614252]
  29. Science. 2018 Jul 27;361(6400):402-406 [PMID: 30049880]
  30. Science. 2007 Aug 3;317(5838):678-81 [PMID: 17673666]
  31. PLoS Pathog. 2009 Mar;5(3):e1000354 [PMID: 19325879]
  32. Science. 2011 May 20;332(6032):974-7 [PMID: 21512004]
  33. Plasmid. 1993 Sep;30(2):150-4 [PMID: 8234487]
  34. Dev Biol. 2000 Apr 1;220(1):53-61 [PMID: 10720430]
  35. Nat Commun. 2013;4:2385 [PMID: 24029835]
  36. Eukaryot Cell. 2002 Aug;1(4):643-52 [PMID: 12456012]
  37. J Bacteriol. 1975 Apr;122(1):185-91 [PMID: 164431]
  38. Mol Biol Cell. 1997 Sep;8(9):1763-75 [PMID: 9307972]
  39. Mucosal Immunol. 2011 Nov;4(6):603-11 [PMID: 21975936]
  40. Cell Microbiol. 2006 Mar;8(3):438-56 [PMID: 16469056]
  41. Development. 2002 Aug;129(16):3839-50 [PMID: 12135922]

Grants

  1. P01 HD039691/NICHD NIH HHS

MeSH Term

Agglutination
Agglutinins
Animals
Bacillus subtilis
Cell Adhesion Molecules
Dictyostelium
Host-Pathogen Interactions
Inflammation
Lectins
Mammals
Micrococcus luteus
Phagocytosis
Staphylococcus aureus

Chemicals

Agglutinins
Cell Adhesion Molecules
Lectins

Word Cloud

Created with Highcharts 10.0.0amoebaebacteriaalsobacterialinterfaceanimalsusedefenseformsprotectiveamoebalphagocytosisDNA-basedextracellulartrapsanti-bacterialmechanismsWhetherliketissue-levelbarriersreducedirectcontactremainedunclearexploredquestionsocialamoebaplaqueslawnsexpanddivideconsumedshowCadAcelladhesionproteinfunctionsdevelopmentagglutininplaqueedgelimitsexposurevegetativeimportantsurvivalbacteria-to-amoebaeratioshighoptimizingfeedingbehaviorprotectingoxidativestressLectinscontrolaccessgutepitheliummammalslimitinflammatoryprocessesthusstrategyantibacterialsharedacrossbroadspectrumeukaryotictaxaSocialestablishassociateslectinagglutination

Similar Articles

Cited By (4)