Productivity and Community Composition of Low Biomass/High Silica Precipitation Hot Springs: A Possible Window to Earth's Early Biosphere?

Jeff R Havig, Trinity L Hamilton
Author Information
  1. Jeff R Havig: Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA. jhavig@umn.edu.
  2. Trinity L Hamilton: Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA. ORCID

Abstract

Terrestrial hot springs have provided a niche space for microbial communities throughout much of Earth's history, and evidence for hydrothermal deposits on the Martian surface suggest this could have also been the case for the red planet. Prior to the evolution of photosynthesis, life in hot springs on early Earth would have been supported though chemoautotrophy. Today, hot spring geochemical and physical parameters can preclude the occurrence of oxygenic phototrophs, providing an opportunity to characterize the geochemical and microbial components. In the absence of the photo-oxidation of water, chemoautotrophy in these hot springs (and throughout Earth's history) relies on the delivery of exogenous electron acceptors and donors such as H, HS, and Fe. Thus, systems fueled by chemoautotrophy are likely energy substrate-limited and support low biomass communities compared to those where oxygenic phototrophs are prevalent. Low biomass silica-precipitating systems have implications for preservation, especially over geologic time. Here, we examine and compare the productivity and composition of low biomass chemoautotrophic versus photoautotrophic communities in silica-saturated hot springs. Our results indicate low biomass chemoautotrophic microbial communities in Yellowstone National Park are supported primarily by sulfur redox reactions and, while similar in total biomass, show higher diversity in anoxygenic phototrophic communities compared to chemoautotrophs. Our data suggest productivity in Archean terrestrial hot springs may be directly linked to redox substrate availability, and there may be high potential for geochemical and physical biosignature preservation from these communities.

Keywords

References

  1. Int J Syst Evol Microbiol. 2014 Oct;64(Pt 10):3496-3502 [PMID: 25052393]
  2. Astrobiology. 2021 Dec;21(12):1526-1546 [PMID: 34889663]
  3. PLoS One. 2015 Jul 21;10(7):e0132994 [PMID: 26196861]
  4. Int J Syst Bacteriol. 1998 Jan;48 Pt 1:31-8 [PMID: 9542073]
  5. Nature. 1983 Feb 10;301(5900):511-3 [PMID: 6401847]
  6. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11327-11332 [PMID: 28973920]
  7. Int J Syst Bacteriol. 1996 Apr;46(2):409-15 [PMID: 8934899]
  8. Syst Appl Microbiol. 1983;4(1):79-87 [PMID: 23196301]
  9. Environ Microbiol. 2011 Aug;13(8):2204-15 [PMID: 21450003]
  10. J Bacteriol. 2008 Apr;190(8):2957-65 [PMID: 18263724]
  11. Nat Commun. 2016 Mar 31;7:11172 [PMID: 27029554]
  12. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 [PMID: 23793624]
  13. Naturwissenschaften. 2009 Nov;96(11):1265-92 [PMID: 19760276]
  14. Nat Commun. 2017 May 09;8:15263 [PMID: 28486437]
  15. Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2805-2811 [PMID: 24867176]
  16. Int J Syst Evol Microbiol. 2009 Mar;59(Pt 3):583-8 [PMID: 19244446]
  17. Nature. 2013 Sep 26;501(7468):535-8 [PMID: 24067713]
  18. PLoS One. 2012;7(1):e30559 [PMID: 22303444]
  19. Int J Syst Evol Microbiol. 2008 May;58(Pt 5):1147-52 [PMID: 18450704]
  20. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  21. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  22. FEMS Microbiol Ecol. 2016 May;92(5):fiw057 [PMID: 26976843]
  23. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  24. Life (Basel). 2018 May 10;8(2): [PMID: 29748464]
  25. Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9871-5 [PMID: 26201989]
  26. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7835-40 [PMID: 11427726]
  27. Front Microbiol. 2011 Apr 09;2:62 [PMID: 21833317]
  28. Astrobiology. 2015 Dec;15(12):1091-5 [PMID: 26684507]
  29. Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1097-104 [PMID: 12148613]
  30. Int J Syst Evol Microbiol. 2000 Nov;50 Pt 6:2001-2008 [PMID: 11155973]
  31. Nat Commun. 2016 Nov 17;7:13554 [PMID: 27853166]
  32. Appl Environ Microbiol. 2017 Aug 1;83(16): [PMID: 28600313]
  33. Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2738-2752 [PMID: 24907263]
  34. Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1757-1764 [PMID: 15388741]
  35. Appl Environ Microbiol. 1999 Aug;65(8):3633-40 [PMID: 10427060]
  36. Appl Environ Microbiol. 2002 Apr;68(4):1735-42 [PMID: 11916691]
  37. PLoS Genet. 2010 Feb 26;6(2):e1000859 [PMID: 20195515]
  38. Int J Syst Evol Microbiol. 2015 Aug;65(8):2666-2670 [PMID: 25964516]
  39. Environ Microbiol Rep. 2016 Dec;8(6):983-992 [PMID: 27700018]
  40. Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):33-39 [PMID: 14742456]
  41. Astrobiology. 2021 Jan;21(1):1-38 [PMID: 33270491]
  42. Appl Microbiol Biotechnol. 2005 Nov;69(1):99-105 [PMID: 15983805]
  43. Sci Am. 2017 Jul 16;317(2):28-35 [PMID: 29565926]
  44. Int J Syst Evol Microbiol. 2000 Mar;50 Pt 2:459-469 [PMID: 10758848]
  45. J Bacteriol. 2009 Mar;191(6):1992-3 [PMID: 19136599]
  46. Extremophiles. 2002 Feb;6(1):39-44 [PMID: 11878560]
  47. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  48. Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2263-2268 [PMID: 16280480]
  49. Science. 2008 May 23;320(5879):1063-7 [PMID: 18497295]

Word Cloud

Created with Highcharts 10.0.0hotspringscommunitiesbiomasslowmicrobialEarth'schemoautotrophygeochemicalthroughouthistorysuggestearlyEarthsupportedphysicaloxygenicphototrophssystemscomparedLowpreservationproductivitychemoautotrophicredoxmayTerrestrialprovidednichespacemuchevidencehydrothermaldepositsMartiansurfacealsocaseredplanetPriorevolutionphotosynthesislifethoughTodayspringparameterscanprecludeoccurrenceprovidingopportunitycharacterizecomponentsabsencephoto-oxidationwaterreliesdeliveryexogenouselectronacceptorsdonorsHHSFeThusfueledlikelyenergysubstrate-limitedsupportprevalentsilica-precipitatingimplicationsespeciallygeologictimeexaminecomparecompositionversusphotoautotrophicsilica-saturatedresultsindicateYellowstoneNationalParkprimarilysulfurreactionssimilartotalshowhigherdiversityanoxygenicphototrophicchemoautotrophsdataArcheanterrestrialdirectlylinkedsubstrateavailabilityhighpotentialbiosignatureProductivityCommunityCompositionBiomass/HighSilicaPrecipitationHotSprings:PossibleWindowEarlyBiosphere?carbonuptakesilicaprecipitating

Similar Articles

Cited By (5)