Bottom-Up Proteomic Analysis of Polypeptide Venom Components of the Giant Ant .

Douglas Oscar Ceolin Mariano, Úrsula Castro de Oliveira, André Junqueira Zaharenko, Daniel Carvalho Pimenta, Gandhi Rádis-Baptista, Álvaro Rossan de Brandão Prieto-da-Silva
Author Information
  1. Douglas Oscar Ceolin Mariano: Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo SP 05503-900, Brazil. ORCID
  2. Úrsula Castro de Oliveira: Laboratory of Applied Toxinology, CeTICS, Instituto Butantan, São Paulo SP 05503-900, Brazil. ORCID
  3. André Junqueira Zaharenko: Laboratory of Genetics, Instituto Butantan, São Paulo SP 05503-900, Brazil.
  4. Daniel Carvalho Pimenta: Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo SP 05503-900, Brazil. ORCID
  5. Gandhi Rádis-Baptista: Laboratorio of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza CE 60165-081, Brazil. gandhi.radis@ufc.br. ORCID
  6. Álvaro Rossan de Brandão Prieto-da-Silva: Laboratory of Genetics, Instituto Butantan, São Paulo SP 05503-900, Brazil. alvaro.prieto@butantan.gov.br. ORCID

Abstract

Ant species have specialized venom systems developed to sting and inoculate a biological cocktail of organic compounds, including peptide and polypeptide toxins, for the purpose of predation and defense. The genus comprises predatory giant ants that inoculate venom capable of causing long-lasting local pain, involuntary shaking, lymphadenopathy, and cardiac arrhythmias, among other symptoms. To deepen our knowledge about venom composition with regard to protein toxins and their roles in the chemical-ecological relationship and human health, we performed a bottom-up proteomics analysis of the crude venom of the giant ant , popularly known as the "false" tocandiras. For this purpose, we used two different analytical approaches: (i) gel-based proteomics approach, wherein the crude venom was resolved by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and all protein bands were excised for analysis; (ii) solution-based proteomics approach, wherein the crude venom protein components were directly fragmented into tryptic peptides in solution for analysis. The proteomic data that resulted from these two methodologies were compared against a previously annotated transcriptomic database of , and subsequently, a homology search was performed for all identified transcript products. The gel-based proteomics approach unequivocally identified nine toxins of high molecular mass in the venom, as for example, enzymes [hyaluronidase, phospholipase A1, dipeptidyl peptidase and glucose dehydrogenase/flavin adenine dinucleotide (FAD) quinone] and diverse venom allergens (homologous of the red fire ant ) and venom-related proteins (major royal jelly-like). Moreover, the solution-based proteomics revealed and confirmed the presence of several hydrolases, oxidoreductases, proteases, Kunitz-like polypeptides, and the less abundant inhibitor cysteine knot (ICK)-like (knottin) neurotoxins and insect defensin. Our results showed that the major components of the venom are toxins that are highly likely to damage cell membranes and tissue, to cause neurotoxicity, and to induce allergic reactions, thus, expanding the knowledge about venom composition and its potential biological effects on prey and victims.

Keywords

References

  1. Biochem J. 2002 Nov 15;368(Pt 1):333-40 [PMID: 12164780]
  2. Biochemistry. 2003 Aug 5;42(30):8939-44 [PMID: 12885226]
  3. Rapid Commun Mass Spectrom. 2003;17(20):2337-42 [PMID: 14558135]
  4. Peptides. 2004 Jun;25(6):919-28 [PMID: 15203237]
  5. J Biol Chem. 2005 Jun 17;280(24):22847-55 [PMID: 15824108]
  6. Rev Inst Med Trop Sao Paulo. 2005 Jul-Aug;47(4):235-8 [PMID: 16138209]
  7. Protein Expr Purif. 2006 Feb;45(2):307-14 [PMID: 16290177]
  8. Biopolymers. 1991 Sep;31(10):1213-20 [PMID: 1724185]
  9. Toxicon. 2008 Feb;51(2):289-96 [PMID: 18023835]
  10. Rev Physiol Biochem Pharmacol. 2008;160:25-46 [PMID: 18481029]
  11. J Mol Biol. 2008 Oct 31;383(1):178-85 [PMID: 18761353]
  12. Endocr Rev. 2008 Dec;29(7):865-97 [PMID: 18824526]
  13. Toxicon. 2010 Apr 1;55(4):702-10 [PMID: 19879289]
  14. J Immunol. 2010 May 1;184(9):5403-13 [PMID: 20348419]
  15. Curr Opin Allergy Clin Immunol. 2010 Aug;10(4):342-6 [PMID: 20445444]
  16. J Lipid Res. 2011 May;52(5):958-70 [PMID: 21393252]
  17. J Mol Biol. 2012 Jan 27;415(4):635-48 [PMID: 22100449]
  18. Toxicon. 2012 Oct;60(5):752-9 [PMID: 22683679]
  19. J Proteome Res. 2012 Sep 7;11(9):4643-53 [PMID: 22881118]
  20. J Proteome Res. 2012 Oct 5;11(10):5046-58 [PMID: 22928724]
  21. J Ethnopharmacol. 2012 Oct 31;144(1):213-6 [PMID: 22960549]
  22. Neurochem Int. 2013 Sep;63(3):141-5 [PMID: 23747963]
  23. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17534-9 [PMID: 24082113]
  24. J Proteomics. 2013 Dec 6;94:413-22 [PMID: 24157790]
  25. PLoS One. 2014 Jan 31;9(1):e87556 [PMID: 24498135]
  26. J Appl Microbiol. 2014 Aug;117(2):390-6 [PMID: 24848589]
  27. J Mol Biol. 2015 Jan 16;427(1):158-175 [PMID: 25088688]
  28. Biochimie. 2014 Dec;107 Pt B:211-5 [PMID: 25220871]
  29. Toxicon. 2014 Dec 15;92:166-78 [PMID: 25448389]
  30. Biopolymers. 2016 Jan;106(1):25-36 [PMID: 26418522]
  31. Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13970-5 [PMID: 26483466]
  32. Nat Prod Commun. 2015 Sep;10(9):1607-9 [PMID: 26594770]
  33. Insect Biochem Mol Biol. 2016 Jan;68:79-88 [PMID: 26603193]
  34. Asian Pac J Allergy Immunol. 2015 Dec;33(4):267-75 [PMID: 26708389]
  35. Toxins (Basel). 2016 Jan 20;8(1):null [PMID: 26805882]
  36. Toxins (Basel). 2016 Jan 22;8(2):32 [PMID: 26805885]
  37. Int J Pept. 2015;2015:537508 [PMID: 26843868]
  38. Peptides. 2017 Dec;98:51-62 [PMID: 27266841]
  39. J Proteome Res. 2016 Sep 2;15(9):3039-54 [PMID: 27436154]
  40. J Proteomics. 2016 Oct 4;148:57-64 [PMID: 27461980]
  41. Toxicon. 2016 Sep 15;120:128-32 [PMID: 27530664]
  42. Toxins (Basel). 2016 Dec 23;9(1): [PMID: 28025529]
  43. J Proteome Res. 2017 Mar 3;16(3):1339-1351 [PMID: 28118015]
  44. PLoS One. 2017 Mar 17;12(3):e0172966 [PMID: 28306751]
  45. Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7154-7159 [PMID: 28630289]
  46. Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt B):2191-2199 [PMID: 28711385]
  47. Front Chem. 2017 Jul 12;5:45 [PMID: 28748179]
  48. Toxins (Basel). 2017 Sep 18;9(9): [PMID: 28927001]
  49. Biol Chem. 2018 Jan 26;399(2):187-196 [PMID: 28976889]
  50. Arch Insect Biochem Physiol. 2017 Nov;96(3):null [PMID: 29024043]
  51. Arch Biochem Biophys. 2018 Jan 15;638:52-57 [PMID: 29258861]
  52. Sci Rep. 2018 Jan 22;8(1):1318 [PMID: 29358620]
  53. Toxicon. 2018 Mar 15;144:83-90 [PMID: 29447904]
  54. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  55. Toxins (Basel). 2018 Jun 19;10(6): [PMID: 29921762]
  56. Nat Commun. 2018 Aug 22;9(1):3373 [PMID: 30135511]
  57. Sci Adv. 2018 Sep 12;4(9):eaau4640 [PMID: 30214940]
  58. Insect Biochem Mol Biol. 2019 Feb;105:10-24 [PMID: 30582958]
  59. Toxins (Basel). 2019 Jan 17;11(1): [PMID: 30658410]
  60. Proc Biol Sci. 2019 Mar 13;286(1898):20182735 [PMID: 30862287]
  61. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  62. Eur J Biochem. 1984 Mar 1;139(2):217-23 [PMID: 6698011]
  63. Arch Biochem Biophys. 1984 Apr;230(1):1-12 [PMID: 6712224]
  64. Anim Behav. 1998 Feb;55(2):299-306 [PMID: 9480697]

MeSH Term

Allergens
Animals
Ant Venoms
Ants
Peptides
Proteomics

Chemicals

Allergens
Ant Venoms
Peptides

Word Cloud

Created with Highcharts 10.0.0venomproteomicstoxinsproteinanalysiscrudeapproachAntinoculatebiologicalpurposegiantknowledgecompositionperformedanttwogel-basedwhereinsolution-basedcomponentsidentifiedallergensmajorspeciesspecializedsystemsdevelopedstingcocktailorganiccompoundsincludingpeptidepolypeptidepredationdefensegenuscomprisespredatoryantscapablecausinglong-lastinglocalpaininvoluntaryshakinglymphadenopathycardiacarrhythmiasamongsymptomsdeepenregardroleschemical-ecologicalrelationshiphumanhealthbottom-uppopularlyknown"false"tocandirasuseddifferentanalyticalapproaches:resolveddenaturingsodiumdodecylsulfate-polyacrylamidegelelectrophoresisSDS-PAGEbandsexcisediidirectlyfragmentedtrypticpeptidessolutionproteomicdataresultedmethodologiescomparedpreviouslyannotatedtranscriptomicdatabasesubsequentlyhomologysearchtranscriptproductsunequivocallyninehighmolecularmassexampleenzymes[hyaluronidasephospholipaseA1dipeptidylpeptidaseglucosedehydrogenase/flavinadeninedinucleotideFADquinone]diversehomologousredfirevenom-relatedproteinsroyaljelly-likeMoreoverrevealedconfirmedpresenceseveralhydrolasesoxidoreductasesproteasesKunitz-likepolypeptideslessabundantinhibitorcysteineknotICK-likeknottinneurotoxinsinsectdefensinresultsshowedhighlylikelydamagecellmembranestissuecauseneurotoxicityinduceallergicreactionsthusexpandingpotentialeffectspreyvictimsBottom-UpProteomicAnalysisPolypeptideVenomComponentsGiantDinoponeraquadricepsFormicidaeHymenopteraICK-like

Similar Articles

Cited By