Mechanism of CuO nano-particles on stimulating production of actinorhodin in Streptomyces coelicolor by transcriptional analysis.

Xiaomei Liu, Jingchun Tang, Lan Wang, Rutao Liu
Author Information
  1. Xiaomei Liu: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
  2. Jingchun Tang: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. tangjch@nankai.edu.cn.
  3. Lan Wang: Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
  4. Rutao Liu: School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China.

Abstract

In this research, antibiotic-producing bacteria, Streptomyces coelicolor (S. coelicolor) M145, was exposed to copper oxide (CuO) particles to investigate the effects of nano-particles (NPs) on antibiotic production. Results showed that a higher yield of antibiotics was obtained with smaller particle sizes of CuO NPs. When exposed to 10 mg/L of 40 nm CuO NPs, the maximum amount of actinorhodin (ACT) obtained was 2.6 mg/L after 144 h, which was 2.0-fold greater than that of control. However, the process was inhibited when the concentration of CuO NPs was increased to higher than 20 mg/L. Transcriptome analysis showed that all the genes involved in the ACT cluster were significantly up-regulated after exposure to 10 mg/L NPs, which could be the direct cause of the increase of ACT production. Additionally, some genes related to the generation of acetyl-coA were up-regulated. In this way, CuO NPs led to an increase of secondary metabolites. The mechanism related to these changes indicated that nano-particle‒induced ROS and Cu played synergetic roles in promoting ACT biosynthesis. This is a first report suggesting that CuO NPs had a significant effect on antibiotic production, which will be helpful in understanding the mechanism of antibiotic production in nature.

References

  1. Nature. 1984 May 31-Jun 6;309(5967):462-4 [PMID: 6328317]
  2. Environ Sci Technol. 2010 Oct 1;44(19):7321-8 [PMID: 20873875]
  3. Appl Environ Microbiol. 2005 Sep;71(9):5050-5 [PMID: 16151086]
  4. Mol Microbiol. 2007 Feb;63(4):951-61 [PMID: 17338074]
  5. Chemosphere. 2008 Apr;71(7):1308-16 [PMID: 18194809]
  6. Nanotoxicology. 2016 Oct;10(8):1051-60 [PMID: 26946995]
  7. Bioresour Technol. 2016 Oct;217:141-9 [PMID: 26951741]
  8. Methods Enzymol. 1996;273:281-300 [PMID: 8791619]
  9. J Bacteriol. 2010 Oct;192(19):4973-82 [PMID: 20675485]
  10. J Mol Microbiol Biotechnol. 2000 Oct;2(4):551-6 [PMID: 11075931]
  11. Chem Biol. 2013 Apr 18;20(4):510-20 [PMID: 23601640]
  12. Sci Total Environ. 2011 Mar 15;409(8):1603-8 [PMID: 21310463]
  13. Chem Commun (Camb). 2010 Nov 7;46(41):7712-4 [PMID: 20871877]
  14. J Biol Chem. 2008 Sep 12;283(37):25186-99 [PMID: 18606812]
  15. Environ Pollut. 2009 May;157(5):1619-25 [PMID: 19185963]
  16. Ecotoxicol Environ Saf. 2018 Aug 30;158:123-130 [PMID: 29677594]
  17. Microbiol Mol Biol Rev. 2013 Mar;77(1):112-43 [PMID: 23471619]
  18. Chemosphere. 2010 Mar;79(1):86-92 [PMID: 20089293]
  19. Biotechnol Lett. 2014 Mar;36(3):641-8 [PMID: 24249103]
  20. Microbiology (Reading). 2010 Aug;156(Pt 8):2343-2353 [PMID: 20447997]
  21. Chem Res Toxicol. 2011 Nov 21;24(11):1899-904 [PMID: 21967630]
  22. Nanoscale. 2016 Jun 9;8(23):11907-23 [PMID: 27240639]
  23. Chem Res Toxicol. 2012 Apr 16;25(4):828-37 [PMID: 22263782]
  24. Environ Sci Technol. 2009 Nov 1;43(21):8423-9 [PMID: 19924979]
  25. Chem Res Toxicol. 2012 Mar 19;25(3):605-19 [PMID: 22136515]
  26. Genome Biol. 2007;8(8):R161 [PMID: 17683547]
  27. Lett Appl Microbiol. 2011 Jul;53(1):50-4 [PMID: 21535046]
  28. Appl Microbiol Biotechnol. 2015 May;99(10):4409-22 [PMID: 25634016]
  29. Microbiology (Reading). 2016 Mar;162(3):537-551 [PMID: 26744083]
  30. FEMS Microbiol Rev. 2012 Jan;36(1):206-31 [PMID: 22092088]
  31. mBio. 2012 Oct 16;3(5):e00191-12 [PMID: 23073761]
  32. Mol Biosyst. 2013 Dec;9(12):3101-16 [PMID: 24100886]
  33. Chemosphere. 2015 Aug;132:142-51 [PMID: 25840340]
  34. Nature. 2002 May 9;417(6885):141-7 [PMID: 12000953]
  35. Appl Environ Microbiol. 2016 Aug 30;82(18):5661-72 [PMID: 27422828]

MeSH Term

Anthraquinones
Anti-Bacterial Agents
Biosynthetic Pathways
Copper
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Nanoparticles
Reactive Oxygen Species
Streptomyces coelicolor

Chemicals

Anthraquinones
Anti-Bacterial Agents
Reactive Oxygen Species
Copper
actinorhodin
cupric oxide

Word Cloud

Created with Highcharts 10.0.0CuONPsproductionACTcoelicolorantibioticStreptomycesexposednano-particlesshowedhigherobtained10 mg/Lactinorhodin2analysisgenesup-regulatedincreaserelatedmechanismresearchantibiotic-producingbacteriaSM145copperoxideparticlesinvestigateeffectsResultsyieldantibioticssmallerparticlesizes40 nmmaximumamount6 mg/L144 h0-foldgreatercontrolHoweverprocessinhibitedconcentrationincreased20 mg/LTranscriptomeinvolvedclustersignificantlyexposuredirectcauseAdditionallygenerationacetyl-coAwayledsecondarymetaboliteschangesindicatednano-particle‒inducedROSCuplayedsynergeticrolespromotingbiosynthesisfirstreportsuggestingsignificanteffectwillhelpfulunderstandingnatureMechanismstimulatingtranscriptional

Similar Articles

Cited By