Absence of Repetitive Correlation Patterns Between Pairs of Adjacent Neocortical Neurons .

Hannes Mogensen, Johanna Norrlid, Jonas M D Enander, Anders Wahlbom, Henrik Jörntell
Author Information
  1. Hannes Mogensen: Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
  2. Johanna Norrlid: Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
  3. Jonas M D Enander: Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
  4. Anders Wahlbom: Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
  5. Henrik Jörntell: Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.

Abstract

Neuroanatomy suggests that adjacent neocortical neurons share a similar set of afferent synaptic inputs, as opposed to neurons localized to different areas of the neocortex. In the present study, we made simultaneous single-electrode patch clamp recordings from two or three adjacent neurons in the primary somatosensory cortex (S1) of the ketamine-xylazine anesthetized rat to study the correlation patterns in their spike firing during both spontaneous and sensory-evoked activity. One difference with previous studies of pairwise neuronal spike firing correlations was that here we identified several different quantifiable parameters in the correlation patterns by which different pairs could be compared. The questions asked were if the correlation patterns between adjacent pairs were similar and if there was a relationship between the degree of similarity and the layer location of the pairs. In contrast, our results show that for putative pyramidal neurons within layer III and within layer V, each pair of neurons is to some extent unique in terms of their spiking correlation patterns. Interestingly, our results also indicated that these correlation patterns did not substantially alter between spontaneous and evoked activity. Our findings are compatible with the view that the synaptic input connectivity to each neocortical neuron is at least in some aspects unique. A possible interpretation is that plasticity mechanisms, which could either be initiating or be supported by transcriptomic differences, tend to differentiate rather than harmonize the synaptic weight distributions between adjacent neurons of the same type.

Keywords

References

  1. Curr Opin Neurobiol. 2017 Oct;46:109-119 [PMID: 28863386]
  2. J Neurosci. 1993 Jul;13(7):2758-71 [PMID: 8331371]
  3. Front Comput Neurosci. 2015 Oct 08;9:120 [PMID: 26500529]
  4. Science. 2006 Jun 16;312(5780):1622-7 [PMID: 16778049]
  5. J Neurosci. 2011 Sep 14;31(37):13260-71 [PMID: 21917809]
  6. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10469-73 [PMID: 8248133]
  7. Cereb Cortex. 2017 Jul 1;27(7):3869-3878 [PMID: 28444185]
  8. J Comp Neurol. 2013 Aug 15;521(12):2798-817 [PMID: 23436325]
  9. Nature. 2008 Aug 14;454(7206):881-5 [PMID: 18633351]
  10. Nature. 2018 Nov;563(7729):72-78 [PMID: 30382198]
  11. J Neurosci. 2009 Feb 25;29(8):2384-92 [PMID: 19244514]
  12. Science. 2015 Nov 27;350(6264):aac9462 [PMID: 26612957]
  13. Science. 2010 Jan 29;327(5965):587-90 [PMID: 20110507]
  14. J Physiol. 2007 May 15;581(Pt 1):139-54 [PMID: 17317752]
  15. Cell Rep. 2015 Dec 15;13(10):2098-106 [PMID: 26670044]
  16. Annu Rev Neurosci. 2000;23:1-37 [PMID: 10845057]
  17. Nature. 2013 Nov 7;503(7474):51-8 [PMID: 24201278]
  18. Front Cell Neurosci. 2009 Aug 10;3:7 [PMID: 19710952]
  19. Neuron. 2017 Jun 7;94(5):985-992 [PMID: 28595055]
  20. Neuron. 2009 May 14;62(3):413-25 [PMID: 19447096]
  21. Neuron. 2012 Jan 26;73(2):391-404 [PMID: 22284191]
  22. Nat Neurosci. 2015 Feb;18(2):170-81 [PMID: 25622573]
  23. Front Cell Neurosci. 2014 Jul 25;8:199 [PMID: 25120429]
  24. Neuron. 2011 Mar 24;69(6):1188-203 [PMID: 21435562]
  25. Sci Rep. 2017 Apr 04;8:45898 [PMID: 28374841]
  26. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16446-50 [PMID: 19805318]
  27. Nature. 2018 Nov;563(7729):79-84 [PMID: 30382200]
  28. Nat Neurosci. 2018 Jan;21(1):120-129 [PMID: 29230054]
  29. Neuron. 2013 Apr 10;78(1):28-48 [PMID: 23583106]
  30. Neuron. 1999 Feb;22(2):361-74 [PMID: 10069341]
  31. Neural Netw. 2013 Nov;47:88-94 [PMID: 23265415]
  32. J Neurosci. 2013 Jan 23;33(4):1684-95 [PMID: 23345241]
  33. Nature. 2010 Jul 1;466(7302):123-7 [PMID: 20596024]
  34. Brain Res Rev. 2007 Oct;55(2):193-203 [PMID: 17822776]
  35. Neuron. 2015 Dec 16;88(6):1253-1267 [PMID: 26671462]
  36. Science. 2001 Dec 21;294(5551):2566-8 [PMID: 11752580]
  37. Nature. 2006 Jun 22;441(7096):979-83 [PMID: 16791195]
  38. J Neurosci. 2011 Oct 19;31(42):14998-5008 [PMID: 22016533]
  39. Cereb Cortex. 2014 Oct;24(10):2707-20 [PMID: 23689635]
  40. Neuron. 2011 Mar 24;69(6):1061-8 [PMID: 21435553]
  41. Eur J Neurosci. 2012 Sep;36(6):2830-8 [PMID: 22759065]

MeSH Term

Action Potentials
Animals
Electrocorticography
Male
Neocortex
Neurons
Rats
Rats, Sprague-Dawley