Driving Cells with Light-Controlled Topographies.

Alberto Puliafito, Serena Ricciardi, Federica Pirani, Viktorie ��ermochov��, Luca Boarino, Natascia De Leo, Luca Primo, Emiliano Descrovi
Author Information
  1. Alberto Puliafito: Candiolo Cancer Institute FPO-IRCCS Candiolo Turin 10060 Italy.
  2. Serena Ricciardi: Department of Applied Science and Technology Polytechnic University of Turin C.so Duca degli Abruzzi 24 Turin 10129 Italy.
  3. Federica Pirani: Department of Applied Science and Technology Polytechnic University of Turin C.so Duca degli Abruzzi 24 Turin 10129 Italy.
  4. Viktorie ��ermochov��: Department of Applied Science and Technology Polytechnic University of Turin C.so Duca degli Abruzzi 24 Turin 10129 Italy.
  5. Luca Boarino: Quantum Research Labs & Nanofacility Piemonte Nanoscience & Materials Division Istituto Nazionale di Ricerca Metrologica Strada delle Cacce 91 Turin 10135 Italy.
  6. Natascia De Leo: Quantum Research Labs & Nanofacility Piemonte Nanoscience & Materials Division Istituto Nazionale di Ricerca Metrologica Strada delle Cacce 91 Turin 10135 Italy.
  7. Luca Primo: Candiolo Cancer Institute FPO-IRCCS Candiolo Turin 10060 Italy.
  8. Emiliano Descrovi: Department of Applied Science and Technology Polytechnic University of Turin C.so Duca degli Abruzzi 24 Turin 10129 Italy. ORCID

Abstract

Cell-substrate interactions can modulate cellular behaviors in a variety of biological contexts, including development and disease. Light-responsive materials have been recently proposed to engineer active substrates with programmable topographies directing cell adhesion, migration, and differentiation. However, current approaches are affected by either fabrication complexity, limitations in the extent of mechanical stimuli, lack of full spatio-temporal control, or ease of use. Here, a platform exploiting light to plastically deform micropatterned polymeric substrates is presented. Topographic changes with remarkable relief depths in the micron range are induced in parallel, by illuminating the sample at once, without using raster scanners. In few tens of seconds, complex topographies are instructed on demand, with arbitrary spatial distributions over a wide range of spatial and temporal scales. Proof-of-concept data on breast cancer cells and normal kidney epithelial cells are presented. Both cell types adhere and proliferate on substrates without appreciable cell damage upon light-induced substrate deformations. User-provided mechanical stimulation aligns and guides cancer cells along the local deformation direction and constrains epithelial colony growth by biasing cell division orientation. This approach is easy to implement on general-purpose optical microscopy systems and suitable for use in cell biology in a wide variety of applications.

Keywords

References

  1. Med Biol Eng Comput. 2010 Oct;48(10):965-76 [PMID: 20424924]
  2. Nat Commun. 2012;3:989 [PMID: 22871808]
  3. Adv Healthc Mater. 2017 Aug;6(16): [PMID: 28509381]
  4. J Phys Condens Matter. 2016 May 11;28(18):183001 [PMID: 27066850]
  5. Nanotechnology. 2012 Dec 7;23(48):485309 [PMID: 23138446]
  6. Small. 2017 Dec;13(46): [PMID: 29045016]
  7. Adv Mater. 2017 Jul;29(27): [PMID: 28474746]
  8. Chem Soc Rev. 2012 Mar 7;41(5):1809-25 [PMID: 22008710]
  9. Soft Matter. 2017 Jun 21;13(24):4321-4327 [PMID: 28589195]
  10. ACS Biomater Sci Eng. 2016 Feb 8;2(2):142-151 [PMID: 33418629]
  11. Methods Cell Biol. 2015;125:289-308 [PMID: 25640435]
  12. Curr Biol. 2004 Apr 20;14(8):731-5 [PMID: 15084290]
  13. Mol Biol Cell. 2018 Jul 15;29(13):1732-1742 [PMID: 29771636]
  14. Physiol Rev. 2012 Jul;92(3):1359-92 [PMID: 22811430]
  15. J Phys Chem B. 2009 Apr 16;113(15):5032-45 [PMID: 19309092]
  16. Soft Matter. 2016 Mar 7;12(9):2593-603 [PMID: 26853516]
  17. Biomater Sci. 2018 May 1;6(5):990-995 [PMID: 29528057]
  18. Chem Rev. 2002 Nov;102(11):4139-75 [PMID: 12428986]
  19. Sci Rep. 2016 Dec 02;6:37909 [PMID: 27910868]
  20. Nat Mater. 2014 Jan;13(1):36-41 [PMID: 24292422]
  21. Nat Rev Mol Cell Biol. 2017 Dec;18(12):728-742 [PMID: 29115301]
  22. J R Soc Interface. 2014 Nov 6;11(100):20140687 [PMID: 25253035]
  23. Nano Lett. 2010 Jan;10(1):296-304 [PMID: 20017565]
  24. Nat Rev Mol Cell Biol. 2014 Dec;15(12):802-12 [PMID: 25355505]
  25. Colloids Surf B Biointerfaces. 2011 Nov 1;88(1):63-71 [PMID: 21764267]
  26. Nat Rev Mol Cell Biol. 2017 Dec;18(12):758-770 [PMID: 28951564]
  27. Opt Lett. 1996 Dec 1;21(23):1948-50 [PMID: 19881855]
  28. Biomaterials. 2014 Sep;35(27):7750-61 [PMID: 24954734]
  29. Adv Sci (Weinh). 2019 May 20;6(14):1801826 [PMID: 31380197]
  30. Nat Rev Mol Cell Biol. 2017 Dec;18(12):743-757 [PMID: 29115298]
  31. Macromol Rapid Commun. 2018 Jan;39(1): [PMID: 28895251]
  32. Nature. 2017 Mar 2;543(7643):118-121 [PMID: 28199303]
  33. Small. 2018 Dec;14(50):e1803274 [PMID: 30353702]
  34. ACS Appl Mater Interfaces. 2018 Jan 10;10(1):91-97 [PMID: 29260543]
  35. Soft Matter. 2014 Jul 14;10(26):4640-7 [PMID: 24833017]
  36. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):739-44 [PMID: 22228306]
  37. Sci Rep. 2016 Aug 17;6:31702 [PMID: 27531219]
  38. Acta Biomater. 2017 Nov;63:317-325 [PMID: 28927933]
  39. Dev Cell. 2017 Nov 6;43(3):305-317.e5 [PMID: 29112851]
  40. Light Sci Appl. 2018 May 23;7:7 [PMID: 30839590]
  41. Biomater Res. 2016 Apr 29;20:11 [PMID: 27134756]
  42. Adv Mater. 2011 May 17;23(19):2149-80 [PMID: 21484890]
  43. Chemistry. 2018 Aug 22;24(47):12206-12220 [PMID: 29740885]
  44. Breast Cancer Res Treat. 2010 May;121(1):53-64 [PMID: 19593635]
  45. Angew Chem Int Ed Engl. 2009;48(30):5406-15 [PMID: 19492373]
  46. Sci Rep. 2019 Jan 30;9(1):1001 [PMID: 30700820]
  47. Adv Healthc Mater. 2019 Feb;8(3):e1801489 [PMID: 30605262]
  48. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5586-91 [PMID: 24706777]
  49. ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16984-91 [PMID: 25876082]
  50. Nat Mater. 2010 Feb;9(2):101-13 [PMID: 20094081]
  51. Mol Cell Endocrinol. 1994 Jan;98(2):173-87 [PMID: 8143927]
  52. ACS Appl Mater Interfaces. 2017 Jan 11;9(1):798-808 [PMID: 27976586]
  53. ACS Appl Mater Interfaces. 2017 Sep 6;9(35):30133-30142 [PMID: 28805057]
  54. J Cell Biol. 2012 Apr 30;197(3):351-60 [PMID: 22547406]
  55. Stem Cell Reports. 2017 Aug 8;9(2):654-666 [PMID: 28757164]
  56. Nat Mater. 2016 Jun;15(6):647-53 [PMID: 26878315]
  57. J Biomed Mater Res A. 2005 Dec 1;75(3):668-80 [PMID: 16110489]

Word Cloud

Created with Highcharts 10.0.0cellsubstratescellsvarietytopographiesmigrationmechanicalusepresentedrangewithoutspatialwidecancerepithelialorientationopticalCell-substrateinteractionscanmodulatecellularbehaviorsbiologicalcontextsincludingdevelopmentdiseaseLight-responsivematerialsrecentlyproposedengineeractiveprogrammabledirectingadhesiondifferentiationHowevercurrentapproachesaffectedeitherfabricationcomplexitylimitationsextentstimulilackfullspatio-temporalcontroleaseplatformexploitinglightplasticallydeformmicropatternedpolymericTopographicchangesremarkablereliefdepthsmicroninducedparallelilluminatingsampleusingrasterscannerstenssecondscomplexinstructeddemandarbitrarydistributionstemporalscalesProof-of-conceptdatabreastnormalkidneytypesadhereproliferateappreciabledamageuponlight-inducedsubstratedeformationsUser-providedstimulationalignsguidesalonglocaldeformationdirectionconstrainscolonygrowthbiasingdivisionapproacheasyimplementgeneral-purposemicroscopysystemssuitablebiologyapplicationsDrivingCellsLight-ControlledTopographiescell���instructivelight���responsivepolymersmanipulation

Similar Articles

Cited By