Watching DNA Replication Inhibitors in Action: Exploiting Time-Lapse Microfluidic Microscopy as a Tool for Target-Drug Interaction Studies in .

Damian Trojanowski, Marta Kołodziej, Joanna Hołówka, Rolf Müller, Jolanta Zakrzewska-Czerwińska
Author Information
  1. Damian Trojanowski: Faculty of Biotechnology, Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland damian.trojanowski@uwr.edu.pl jolanta.zakrzewska@uni.wroc.pl.
  2. Marta Kołodziej: Faculty of Biotechnology, Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland.
  3. Joanna Hołówka: Faculty of Biotechnology, Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland.
  4. Rolf Müller: German Centre for Infection Research (DZIF), Hannover, Hannover-Braunschweig, Germany.
  5. Jolanta Zakrzewska-Czerwińska: Faculty of Biotechnology, Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland damian.trojanowski@uwr.edu.pl jolanta.zakrzewska@uni.wroc.pl.

Abstract

Spreading resistance to antibiotics and the emergence of multidrug-resistant strains have become frequent in many bacterial species, including mycobacteria, which are the causative agents of severe diseases and which have profound impacts on global health. Here, we used a system of microfluidics, fluorescence microscopy, and target-tagged fluorescent reporter strains of to perform real-time monitoring of replisome and chromosome dynamics following the addition of replication-altering drugs (novobiocin, nalidixic acid, and griselimycin) at the single-cell level. We found that novobiocin stalled replication forks and caused relaxation of the nucleoid and that nalidixic acid triggered rapid replisome collapse and compaction of the nucleoid, while griselimycin caused replisome instability, with the subsequent overinitiation of chromosome replication and overrelaxation of the nucleoid. In addition to study target-drug interactions, our system also enabled us to observe how the tested antibiotics affected the physiology of mycobacterial cells (i.e., growth, chromosome segregation, etc.).

Keywords

References

  1. Science. 2012 Jan 6;335(6064):100-4 [PMID: 22174129]
  2. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2765-70 [PMID: 21282646]
  3. Surgery. 1983 Jan;93(1 Pt 2):165-71 [PMID: 6849201]
  4. mBio. 2015 Feb 17;6(1):e02125-14 [PMID: 25691599]
  5. Cell. 2013 May 9;153(4):882-95 [PMID: 23623305]
  6. Nat Commun. 2014 Dec 18;5:5820 [PMID: 25520215]
  7. Mediterr J Hematol Infect Dis. 2014 Nov 01;6(1):e2014070 [PMID: 25408856]
  8. PLoS One. 2012;7(9):e44582 [PMID: 22970255]
  9. J Cell Biochem. 2005 Oct 15;96(3):506-21 [PMID: 15988757]
  10. Science. 2015 Jun 5;348(6239):1106-12 [PMID: 26045430]
  11. Nat Rev Microbiol. 2010 Jun;8(6):423-35 [PMID: 20440275]
  12. J Biol Chem. 2013 Aug 30;288(35):25659-67 [PMID: 23884460]
  13. Nucleic Acids Res. 2009 May;37(9):2796-809 [PMID: 19279187]
  14. Chem Rev. 2005 Feb;105(2):425-48 [PMID: 15700951]
  15. J Med Microbiol. 1989 Jun;29(2):139-44 [PMID: 2659796]
  16. Science. 2013 Nov 8;342(6159):731-4 [PMID: 24158908]
  17. EMBO J. 2007 Oct 31;26(21):4514-22 [PMID: 17914458]
  18. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8302-7 [PMID: 27357669]
  19. Nature. 2011 Apr 7;472(7341):32 [PMID: 21475175]
  20. Cell. 2005 Jun 17;121(6):899-911 [PMID: 15960977]
  21. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4838-42 [PMID: 368801]
  22. Exp Ther Med. 2016 Jun;11(6):2229-2232 [PMID: 27313667]
  23. Mol Microbiol. 2017 Aug;105(3):453-468 [PMID: 28517109]
  24. Science. 2010 Apr 23;328(5977):498-501 [PMID: 20413500]
  25. Front Microbiol. 2018 Jul 17;9:1592 [PMID: 30065714]
  26. PLoS Genet. 2010 Jan 15;6(1):e1000810 [PMID: 20090829]
  27. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4767-71 [PMID: 200930]
  28. Antimicrob Agents Chemother. 1982 Oct;22(4):662-71 [PMID: 6295263]
  29. Expert Opin Drug Discov. 2012 Apr;7(4):327-39 [PMID: 22458504]
  30. Front Microbiol. 2017 Mar 21;8:463 [PMID: 28377757]
  31. Curr Biol. 2017 Nov 6;27(21):3367-3374.e7 [PMID: 29107550]
  32. Antimicrob Agents Chemother. 2004 Apr;48(4):1281-8 [PMID: 15047530]
  33. FEMS Microbiol Rev. 2018 Jan 1;42(1): [PMID: 29069382]
  34. Chem Biol. 2014 Apr 24;21(4):481-487 [PMID: 24631121]
  35. Antimicrob Agents Chemother. 2007 Jan;51(1):119-27 [PMID: 17074800]
  36. Biochemistry. 2014 Mar 18;53(10):1565-74 [PMID: 24576155]
  37. Microbiology. 2014 May;160(Pt 5):872-882 [PMID: 24615185]
  38. J Bacteriol. 2018 Apr 24;200(10): [PMID: 29531181]
  39. Mol Microbiol. 2006 Aug;61(3):810-25 [PMID: 16803589]
  40. Int J Med Microbiol. 2014 Jan;304(1):31-6 [PMID: 24079980]
  41. New Microbes New Infect. 2015 Apr 16;6:22-9 [PMID: 26029375]
  42. Mol Cell. 2011 Mar 18;41(6):720-32 [PMID: 21419346]
  43. Annu Rev Cell Dev Biol. 2015;31:171-99 [PMID: 26566111]
  44. Microbiol Spectr. 2016 Apr;4(2): [PMID: 27227291]
  45. Mol Microbiol. 2013 Apr;88(1):64-76 [PMID: 23387305]
  46. Infect Dis Rep. 2016 Jun 24;8(2):6569 [PMID: 27403268]
  47. Pharmacotherapy. 2009 Dec;29(12):1468-81 [PMID: 19947806]
  48. Sci Rep. 2017 Mar 06;7:43836 [PMID: 28262767]
  49. J Anaesthesiol Clin Pharmacol. 2017 Jul-Sep;33(3):300-305 [PMID: 29109626]
  50. AMA Arch Intern Med. 1956 Jul;98(1):1-7 [PMID: 13338887]
  51. J Biol Chem. 2014 Apr 18;289(16):11342-52 [PMID: 24599955]
  52. J Antimicrob Chemother. 2017 May 1;72(5):1275-1284 [PMID: 28073967]
  53. Open Microbiol J. 2014 May 30;8:40-50 [PMID: 24949109]
  54. mBio. 2017 Nov 7;8(6): [PMID: 29114022]
  55. Nat Commun. 2013;4:2470 [PMID: 24036848]
  56. Curr Top Med Chem. 2017 Jun 16;17(19):2129-2142 [PMID: 28137234]
  57. P T. 2015 Apr;40(4):277-83 [PMID: 25859123]
  58. J Antimicrob Chemother. 2001 Oct;48(4):479-85 [PMID: 11581225]
  59. Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):E839-46 [PMID: 26792518]
  60. Arch Microbiol. 2014 Mar;196(3):157-68 [PMID: 24481536]
  61. Future Med Chem. 2016 Jun;8(10):1017-25 [PMID: 27328129]
  62. Philos Trans R Soc Lond B Biol Sci. 2017 Jan 19;372(1712): [PMID: 27920384]
  63. EMBO J. 2003 Dec 1;22(23):6408-18 [PMID: 14633999]
  64. ERJ Open Res. 2015 May 06;1(1): [PMID: 27730131]
  65. EMBO J. 2016 Jul 15;35(14):1582-95 [PMID: 27288403]
  66. ACS Chem Biol. 2018 Jun 15;13(6):1447-1454 [PMID: 29757604]
  67. BMC Microbiol. 2009 Apr 13;9:69 [PMID: 19364397]
  68. Front Microbiol. 2018 Sep 05;9:2034 [PMID: 30233521]
  69. Curr Genomics. 2009 May;10(3):206-15 [PMID: 19881914]

MeSH Term

Anti-Infective Agents
Bacterial Proteins
Chromosome Segregation
Chromosomes, Bacterial
DNA Replication
Drug Evaluation
Microfluidics
Microscopy, Fluorescence
Mycobacterium smegmatis
Nucleic Acid Synthesis Inhibitors
Time-Lapse Imaging

Chemicals

Anti-Infective Agents
Bacterial Proteins
Nucleic Acid Synthesis Inhibitors

Word Cloud

Created with Highcharts 10.0.0replisomechromosomeantibioticsreplicationnucleoidstrainsbacterialsystemadditionnovobiocinnalidixicacidgriselimycincausedDNASpreadingresistanceemergencemultidrug-resistantbecomefrequentmanyspeciesincludingmycobacteriacausativeagentsseverediseasesprofoundimpactsglobalhealthusedmicrofluidicsfluorescencemicroscopytarget-taggedfluorescentreporterperformreal-timemonitoringdynamicsfollowingreplication-alteringdrugssingle-celllevelfoundstalledforksrelaxationtriggeredrapidcollapsecompactioninstabilitysubsequentoverinitiationoverrelaxationstudytarget-druginteractionsalsoenabledusobservetestedaffectedphysiologymycobacterialcellsiegrowthsegregationetcWatchingReplicationInhibitorsAction:ExploitingTime-LapseMicrofluidicMicroscopyToolTarget-DrugInteractionStudiesinhibitorsMycobacterium

Similar Articles

Cited By