Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth.

Marie Levakova, Lubomir Kostal, Christelle Monsempès, Philippe Lucas, Ryota Kobayashi
Author Information
  1. Marie Levakova: Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
  2. Lubomir Kostal: Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
  3. Christelle Monsempès: Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, 78000 Versailles, France.
  4. Philippe Lucas: Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, 78000 Versailles, France.
  5. Ryota Kobayashi: Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.

Abstract

In order to understand how olfactory stimuli are encoded and processed in the brain, it is important to build a computational model for olfactory receptor neurons (ORNs). Here, we present a simple and reliable mathematical model of a moth ORN generating spikes. The model incorporates a simplified description of the chemical kinetics leading to olfactory receptor activation and action potential generation. We show that an adaptive spike threshold regulated by prior spike history is an effective mechanism for reproducing the typical phasic-tonic time course of ORN responses. Our model reproduces the response dynamics of individual neurons to a fluctuating stimulus that approximates odorant fluctuations in nature. The parameters of the spike threshold are essential for reproducing the response heterogeneity in ORNs. The model provides a valuable tool for efficient simulations of olfactory circuits.

Keywords

References

  1. J Neurosci Methods. 1999 Dec 15;94(1):81-92 [PMID: 10638817]
  2. Chem Senses. 2000 Jun;25(3):293-311 [PMID: 10866988]
  3. Chem Senses. 2001 Feb;26(2):125-50 [PMID: 11238244]
  4. Biophys J. 2001 Apr;80(4):1712-21 [PMID: 11259285]
  5. J Comput Neurosci. 2001 Jan-Feb;10(1):25-45 [PMID: 11316338]
  6. J Neurosci. 2001 Jul 15;21(14):5229-38 [PMID: 11438598]
  7. Biophys J. 2002 Apr;82(4):2005-15 [PMID: 11916858]
  8. Chem Senses. 2002 Sep;27(7):599-610 [PMID: 12200339]
  9. Chem Senses. 2002 Nov;27(9):789-801 [PMID: 12438204]
  10. Biosystems. 2002 Oct-Dec;67(1-3):3-16 [PMID: 12459279]
  11. Neural Comput. 2003 Feb;15(2):253-78 [PMID: 12590807]
  12. Neuron. 2003 Mar 6;37(5):843-52 [PMID: 12628174]
  13. J Exp Biol. 2003 May;206(Pt 9):1575-88 [PMID: 12654896]
  14. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Mar;189(3):221-30 [PMID: 12664098]
  15. J Neurophysiol. 2003 Sep;90(3):1598-612 [PMID: 12750422]
  16. Chem Senses. 2003 Jul;28(6):509-22 [PMID: 12907588]
  17. Biophys J. 1965 Mar;5:173-94 [PMID: 14268952]
  18. Chem Senses. 2004 Jul;29(6):529-31 [PMID: 15269125]
  19. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10415-20 [PMID: 16027364]
  20. Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1970-5 [PMID: 16446455]
  21. Biol Cybern. 2006 Jul;95(1):1-19 [PMID: 16622699]
  22. J Comput Neurosci. 2006 Aug;21(1):35-49 [PMID: 16633938]
  23. Annu Rev Neurosci. 2006;29:163-201 [PMID: 16776583]
  24. PLoS Comput Biol. 2006 Jul 21;2(7):e94 [PMID: 16848639]
  25. Nature. 2007 Aug 9;448(7154):709-13 [PMID: 17581587]
  26. J Neurosci Methods. 2008 Apr 30;169(2):417-24 [PMID: 18160135]
  27. PLoS Comput Biol. 2008 Apr 25;4(4):e1000053 [PMID: 18437217]
  28. J Neurosci. 1991 Apr;11(4):956-65 [PMID: 1849175]
  29. Neuron. 2009 Feb 26;61(4):570-86 [PMID: 19249277]
  30. PLoS Comput Biol. 2009 Mar;5(3):e1000321 [PMID: 19300479]
  31. J Comput Neurosci. 2010 Aug;29(1-2):171-182 [PMID: 19655238]
  32. Front Comput Neurosci. 2009 Jul 30;3:9 [PMID: 19668702]
  33. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Oct;195(10):895-922 [PMID: 19697043]
  34. Phys Rev Lett. 2009 Oct 2;103(14):148102 [PMID: 19905605]
  35. Front Comput Neurosci. 2010 Jan 04;3:29 [PMID: 20130755]
  36. Nat Neurosci. 2011 Feb;14(2):208-16 [PMID: 21217763]
  37. Neural Comput. 2011 Apr;23(4):882-908 [PMID: 21222530]
  38. Front Cell Neurosci. 2010 Dec 31;4:133 [PMID: 21228914]
  39. PLoS One. 2011 Mar 02;6(3):e17422 [PMID: 21399691]
  40. J Comput Neurosci. 2012 Apr;32(2):197-212 [PMID: 21698405]
  41. Brain Res. 2012 Jan 24;1434:123-35 [PMID: 22030408]
  42. Front Neuroeng. 2011 Dec 28;4:17 [PMID: 22232601]
  43. J Neurosci. 2013 Apr 10;33(15):6285-97 [PMID: 23575828]
  44. PLoS Comput Biol. 2014 Dec 04;10(12):e1003975 [PMID: 25474026]
  45. PLoS Comput Biol. 2015 Oct 12;11(10):e1004531 [PMID: 26458212]
  46. Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):E902-11 [PMID: 26831094]
  47. J Comput Neurosci. 2016 Jun;40(3):347-62 [PMID: 27085337]
  48. PLoS One. 2016 Nov 9;11(11):e0166060 [PMID: 27829053]
  49. PLoS Comput Biol. 2017 Jun 22;13(6):e1005551 [PMID: 28640825]
  50. Elife. 2017 Jun 28;6: [PMID: 28653907]
  51. PLoS Comput Biol. 2017 Dec 1;13(12):e1005870 [PMID: 29194457]
  52. Front Cell Neurosci. 2018 Apr 05;12:94 [PMID: 29674957]
  53. PLoS Comput Biol. 2018 Nov 13;14(11):e1006586 [PMID: 30422975]
  54. Ann N Y Acad Sci. 1987;510:104-12 [PMID: 3324874]
  55. Nature. 1995 Jul 6;376(6535):33-6 [PMID: 7596429]
  56. J Comput Neurosci. 1996 Mar;3(1):51-72 [PMID: 8717489]
  57. Annu Rev Neurosci. 1997;20:595-631 [PMID: 9056726]
  58. Biosystems. 1998 Sep-Dec;48(1-3):131-8 [PMID: 9886640]

MeSH Term

Action Potentials
Adaptation, Physiological
Animals
Electrophysiological Phenomena
Male
Models, Biological
Moths
Olfactory Receptor Neurons
Sex Attractants

Chemicals

Sex Attractants

Word Cloud

Created with Highcharts 10.0.0modelolfactoryreceptorspikethresholdneuronsORNsmothORNadaptivereproducingresponsesreproducesresponsedynamicsintegrate-and-fireneuronorderunderstandstimuliencodedprocessedbrainimportantbuildcomputationalpresentsimplereliablemathematicalgeneratingspikesincorporatessimplifieddescriptionchemicalkineticsleadingactivationactionpotentialgenerationshowregulatedpriorhistoryeffectivemechanismtypicalphasic-tonictimecourseindividualfluctuatingstimulusapproximatesodorantfluctuationsnatureparametersessentialheterogeneityprovidesvaluabletoolefficientsimulationscircuitsAdaptive

Similar Articles

Cited By