Biological Control of Citrus Postharvest Phytopathogens.

Jaqueline Moraes Bazioli, João Raul Belinato, Jonas Henrique Costa, Daniel Yuri Akiyama, João Guilherme de Moraes Pontes, Katia Cristina Kupper, Fabio Augusto, João Ernesto de Carvalho, Taícia Pacheco Fill
Author Information
  1. Jaqueline Moraes Bazioli: Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil.
  2. João Raul Belinato: Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil.
  3. Jonas Henrique Costa: Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil.
  4. Daniel Yuri Akiyama: Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil.
  5. João Guilherme de Moraes Pontes: Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil. ORCID
  6. Katia Cristina Kupper: Instituto Agronômico de Campinas (IAC), 13490-970 Cordeiropolis, SP, Brazil. ORCID
  7. Fabio Augusto: Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil. ORCID
  8. João Ernesto de Carvalho: Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil.
  9. Taícia Pacheco Fill: Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil. taicia@iqm.unicamp.br.

Abstract

Citrus are vulnerable to the postharvest decay caused by , , and , which are responsible for the green mold, blue mold, and sour rot post-harvest disease, respectively. The widespread economic losses in citriculture caused by these phytopathogens are minimized with the use of synthetic fungicides such as imazalil, thiabendazole, pyrimethanil, and fludioxonil, which are mainly employed as control agents and may have harmful effects on human health and environment. To date, numerous non-chemical postharvest treatments have been investigated for the control of these pathogens. Several studies demonstrated that biological control using microbial antagonists and natural products can be effective in controlling postharvest diseases in citrus, as well as the most used commercial fungicides. Therefore, microbial agents represent a considerably safer and low toxicity alternative to synthetic fungicides. In the present review, these biological control strategies as alternative to the chemical fungicides are summarized here and new challenges regarding the development of shelf-stable formulated biocontrol products are also discussed.

Keywords

References

  1. Trends Plant Sci. 2001 Oct;6(10):445-7 [PMID: 11686134]
  2. Syst Appl Microbiol. 2001 Nov;24(3):395-9 [PMID: 11822675]
  3. J Agric Food Chem. 2002 Oct 23;50(22):6361-5 [PMID: 12381117]
  4. Curr Genet. 2004 Mar;45(3):140-8 [PMID: 14716497]
  5. Int J Food Microbiol. 2004 Mar 1;91(2):185-94 [PMID: 14996462]
  6. Plant Physiol. 1991 Nov;97(3):880-5 [PMID: 16668526]
  7. Phytopathology. 2002 Apr;92(4):393-9 [PMID: 18942952]
  8. Phytopathology. 2003 May;93(5):564-72 [PMID: 18942978]
  9. Phytopathology. 2007 Nov;97(11):1491-500 [PMID: 18943520]
  10. Phytopathology. 2004 Jan;94(1):44-51 [PMID: 18943818]
  11. Phytopathology. 2004 Jul;94(7):693-705 [PMID: 18943901]
  12. Phytopathology. 1999 Sep;89(9):716-21 [PMID: 18944698]
  13. J Appl Microbiol. 2009 Nov;107(5):1450-6 [PMID: 19426269]
  14. Microb Cell Fact. 2009 Oct 27;8:55 [PMID: 19860881]
  15. Mol Plant Pathol. 2001 Sep 1;2(5):265-74 [PMID: 20573014]
  16. Int J Food Microbiol. 2011 Dec 2;151(2):190-4 [PMID: 21920618]
  17. Toxins (Basel). 2009 Sep;1(1):3-13 [PMID: 22069528]
  18. Food Microbiol. 2012 May;30(1):219-25 [PMID: 22265304]
  19. PLoS One. 2012;7(1):e29452 [PMID: 22276116]
  20. Lett Appl Microbiol. 2012 Aug;55(2):155-61 [PMID: 22670562]
  21. J Sci Food Agric. 2012 Oct;92(13):2668-71 [PMID: 22696430]
  22. Int J Food Microbiol. 2012 Aug 17;158(2):101-6 [PMID: 22831817]
  23. Braz J Microbiol. 2010 Apr;41(2):404-10 [PMID: 24031511]
  24. Int J Food Microbiol. 2013 Oct 15;167(2):153-60 [PMID: 24135671]
  25. World J Microbiol Biotechnol. 2014 Apr;30(4):1169-75 [PMID: 24162951]
  26. J Appl Microbiol. 2014 Jul;117(1):1-17 [PMID: 24617532]
  27. Carbohydr Polym. 2014 Nov 26;113:174-81 [PMID: 25256472]
  28. J Agric Food Chem. 2015 Jan 21;63(2):457-63 [PMID: 25537192]
  29. Int J Food Microbiol. 2015 May 4;200:22-30 [PMID: 25666444]
  30. Biocontrol Sci. 2014;19(4):189-97 [PMID: 25744215]
  31. J Sci Food Agric. 2016 Mar 15;96(4):1306-12 [PMID: 25894505]
  32. J Basic Microbiol. 2015 Dec;55(12):1343-56 [PMID: 26214840]
  33. Lett Appl Microbiol. 2016 Jan;62(1):16-22 [PMID: 26458008]
  34. Food Chem. 2016 Apr 1;196:610-8 [PMID: 26593534]
  35. Food Microbiol. 2016 Sep;58:87-94 [PMID: 27217363]
  36. Microbiol Res. 2016 Jul-Aug;188-189:72-79 [PMID: 27296964]
  37. Int J Food Microbiol. 2016 Oct 3;234:1-8 [PMID: 27356109]
  38. Food Chem. 2017 Mar 1;218:575-583 [PMID: 27719952]
  39. PLoS One. 2016 Oct 28;11(10):e0165590 [PMID: 27792761]
  40. Food Microbiol. 2017 Apr;62:9-14 [PMID: 27889171]
  41. J Food Sci Technol. 2016 Oct;53(10):3853-3858 [PMID: 28018001]
  42. Food Microbiol. 2017 May;63:101-110 [PMID: 28040156]
  43. Front Microbiol. 2017 Mar 07;8:347 [PMID: 28326067]
  44. Molecules. 2017 Dec 15;22(12):null [PMID: 29244766]
  45. Crit Rev Food Sci Nutr. 2019;59(9):1498-1513 [PMID: 29336595]
  46. Int J Food Microbiol. 2018 Jul 2;276:20-27 [PMID: 29653393]
  47. Front Microbiol. 2018 Apr 03;9:593 [PMID: 29666611]
  48. Plants (Basel). 2019 Jan 22;8(2):null [PMID: 30678206]
  49. Plant Dis. 2012 Feb;96(2):235-242 [PMID: 30731806]
  50. Biomolecules. 2019 Mar 29;9(4): [PMID: 30934892]
  51. Int J Food Microbiol. 1998 Mar 3;40(1-2):9-16 [PMID: 9600605]

MeSH Term

Citrus
Fungicides, Industrial
Geotrichum
Penicillium
Pest Control, Biological

Chemicals

Fungicides, Industrial

Word Cloud

Created with Highcharts 10.0.0controlfungicidespostharvestbiologicalCitruscausedmoldpost-harvestsyntheticagentsmicrobialproductsalternativePenicilliumvulnerabledecayresponsiblegreenbluesourrotdiseaserespectivelywidespreadeconomiclossescitriculturephytopathogensminimizeduseimazalilthiabendazolepyrimethanilfludioxonilmainlyemployedmayharmfuleffectshumanhealthenvironmentdatenumerousnon-chemicaltreatmentsinvestigatedpathogensSeveralstudiesdemonstratedusingantagonistsnaturalcaneffectivecontrollingdiseasescitruswellusedcommercialThereforerepresentconsiderablysaferlowtoxicitypresentreviewstrategieschemicalsummarizednewchallengesregardingdevelopmentshelf-stableformulatedbiocontrolalsodiscussedBiologicalControlPostharvestPhytopathogensGeothrichumcitri-aurantiidigitatumitalicumphytopathogen

Similar Articles

Cited By