Real-Time Selective Sequencing with RUBRIC: Read Until with Basecall and Reference-Informed Criteria.

Harrison S Edwards, Raga Krishnakumar, Anupama Sinha, Sara W Bird, Kamlesh D Patel, Michael S Bartsch
Author Information
  1. Harrison S Edwards: Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.
  2. Raga Krishnakumar: Systems Biology Dept., Sandia National Laboratories, Livermore, CA, USA.
  3. Anupama Sinha: Systems Biology Dept., Sandia National Laboratories, Livermore, CA, USA.
  4. Sara W Bird: Biotechnology & Bioengineering Dept., Sandia National Laboratories, Livermore, CA, USA.
  5. Kamlesh D Patel: Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.
  6. Michael S Bartsch: Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA. mbarts@sandia.gov. ORCID

Abstract

The Oxford MinION, the first commercial nanopore sequencer, is also the first to implement molecule-by-molecule real-time selective sequencing or "Read Until". As DNA transits a MinION nanopore, real-time pore current data can be accessed and analyzed to provide active feedback to that pore. Fragments of interest are sequenced by default, while DNA deemed non-informative is rejected by reversing the pore bias to eject the strand, providing a novel means of background depletion and/or target enrichment. In contrast to the previously published pattern-matching Read Until approach, our RUBRIC method is the first example of real-time selective sequencing where on-line basecalling enables alignment against conventional nucleic acid references to provide the basis for sequence/reject decisions. We evaluate RUBRIC performance across a range of optimizable parameters, apply it to mixed human/bacteria and CRISPR/Cas9-cut samples, and present a generalized model for estimating real-time selection performance as a function of sample composition and computing configuration.

References

  1. Nat Methods. 2018 Mar;15(3):201-206 [PMID: 29334379]
  2. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8477-82 [PMID: 22586076]
  3. J Antimicrob Chemother. 2017 Jan;72(1):104-114 [PMID: 27667325]
  4. Gigascience. 2017 Mar 1;6(3):1-10 [PMID: 28327976]
  5. Genome Biol. 2016 Nov 25;17(1):239 [PMID: 27887629]
  6. Nat Biotechnol. 2018 Apr;36(4):338-345 [PMID: 29431738]
  7. Nucleic Acids Res. 2015 Dec 15;43(22):e152 [PMID: 26240383]
  8. Sci Rep. 2017 Feb 03;7:41759 [PMID: 28155888]
  9. Front Microbiol. 2017 Jul 04;8:1069 [PMID: 28725217]
  10. Nat Biotechnol. 2015 Mar;33(3):296-300 [PMID: 25485618]
  11. Cancer Biol Ther. 2016;17(3):246-53 [PMID: 26787508]
  12. Nanotechnology. 2010 Oct 1;21(39):395502 [PMID: 20808035]
  13. Methods Enzymol. 2014;546:1-20 [PMID: 25398333]
  14. BMC Genomics. 2017 Jul 26;18(1):564 [PMID: 28747151]
  15. Nat Commun. 2017 Feb 07;8:14291 [PMID: 28169275]
  16. Gigascience. 2016 Jul 26;5(1):32 [PMID: 27457073]
  17. Sci Rep. 2018 Apr 3;8(1):5417 [PMID: 29615665]
  18. J Clin Microbiol. 2017 May;55(5):1285-1298 [PMID: 28275074]
  19. Genome Biol. 2015 May 30;16:114 [PMID: 26025440]
  20. Appl Environ Microbiol. 2018 Jan 31;84(4): [PMID: 29196295]
  21. Genome Res. 2011 Mar;21(3):487-93 [PMID: 21209072]
  22. Nat Protoc. 2017 Jun;12(6):1261-1276 [PMID: 28538739]
  23. Sci Rep. 2018 Feb 16;8(1):3159 [PMID: 29453452]
  24. Nat Commun. 2018 Feb 7;9(1):541 [PMID: 29416032]
  25. Virus Res. 2017 Jul 15;239:172-179 [PMID: 28583442]
  26. Bioinformatics. 2019 Feb 15;35(4):584-592 [PMID: 30776078]
  27. Genome Res. 2018 Feb;28(2):266-274 [PMID: 29273626]
  28. Malar J. 2018 May 29;17(1):217 [PMID: 29843734]
  29. J Hosp Infect. 2017 Jul;96(3):296-298 [PMID: 28389092]
  30. Nat Methods. 2016 Sep;13(9):751-4 [PMID: 27454285]
  31. Cancer Genet. 2013 Dec;206(12):420-31 [PMID: 24388712]
  32. Genome Med. 2015 Sep 29;7:99 [PMID: 26416663]
  33. Front Microbiol. 2017 Dec 20;8:2594 [PMID: 29326684]
  34. Emerg Infect Dis. 2016 Feb;22(2):331-4 [PMID: 26812583]
  35. Methods. 2016 Oct 1;108:14-23 [PMID: 27223403]
  36. Nature. 2016 Feb 11;530(7589):228-232 [PMID: 26840485]
  37. Microb Genom. 2018 Feb;4(2): [PMID: 29310749]
  38. DNA Res. 2017 Dec 1;24(6):585-596 [PMID: 29117310]
  39. Bioinformatics. 2019 Jul 1;35(13):2193-2198 [PMID: 30462145]
  40. PLoS Negl Trop Dis. 2017 Nov 20;11(11):e0006075 [PMID: 29155823]

MeSH Term

Bacteriophage lambda
CRISPR-Cas Systems
DNA, Bacterial
DNA, Viral
Escherichia coli
HeLa Cells
High-Throughput Nucleotide Sequencing
Humans
Models, Genetic
Nanopores
Proof of Concept Study
Sequence Analysis, DNA

Chemicals

DNA, Bacterial
DNA, Viral