A systematic optimization of F MR image acquisition to detect macrophage invasion into an ECM hydrogel implanted in the stroke-damaged brain.

Harmanvir Ghuman, T Kevin Hitchens, Michel Modo
Author Information
  1. Harmanvir Ghuman: McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
  2. T Kevin Hitchens: Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
  3. Michel Modo: McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address: mmm154@pitt.edu.

Abstract

F-MR imaging of perfluorocarbon (PFC)-labeled macrophages can provide a unique insight into their participation and spatio-temporal dynamics of inflammatory events, such as the biodegradation of an extracellular matrix (ECM) hydrogel implanted into a stroke cavity. To determine the most efficient acquisition strategy for F-MR imaging, five commonly used sequences were optimized using a design of experiment (DoE) approach and compared based on their signal-to-noise ratio (SNR). The fast imaging with steady-state precession (FISP) sequence produced the most efficient detection of a F signal followed by the rapid acquisition with relaxation enhancement (RARE) sequence. The multi-slice multi-echo (MSME), fast low angle shot (FLASH), and zero echo time (ZTE) sequences were significantly less efficient. Imaging parameters (matrix/voxel size; slice thickness, number of averages) determined the accuracy (i.e. trueness and precision) of object identification by reducing partial volume effects, as determined by analysis of the point spread function (PSF). A 96 × 96 matrix size (0.35 mm) produced the lowest limit of detection (LOD) for RARE (2.85 mM PFPE; 119 mM F) and FISP (0.43 mM PFPE; 18.1 mM F), with an SNR of 2 as the detection threshold. Imaging of a brain phantom with PFC-labeled macrophages invading an ECM hydrogel further illustrated the impact of these parameter changes. The systematic optimization of sequence and imaging parameters provides the framework for an accurate visualization of F-labeled macrophage distribution and density in the brain. This will enhance our understanding of the contribution of periphery-derived macrophages in bioscaffold degradation and its role in brain tissue regeneration.

Keywords

References

  1. NMR Biomed. 2017 Nov;30(11): [PMID: 28841762]
  2. Nat Mater. 2016 Jun;15(6):662-8 [PMID: 26974409]
  3. Eur Radiol. 2002 Dec;12(12):2866-82 [PMID: 12439564]
  4. PLoS One. 2013 May 08;8(5):e59479 [PMID: 23667419]
  5. J Comput Assist Tomogr. 1979 Jun;3(3):299-308 [PMID: 438372]
  6. Magn Reson Med. 1997 Nov;38(5):733-40 [PMID: 9358447]
  7. J Am Chem Soc. 2008 Mar 5;130(9):2832-41 [PMID: 18266363]
  8. Biomaterials. 2011 Apr;32(12):3233-43 [PMID: 21296410]
  9. AJNR Am J Neuroradiol. 2000 Oct;21(9):1767-8 [PMID: 11039364]
  10. Acta Biomater. 2015 Nov;27:116-130 [PMID: 26318805]
  11. ACS Nano. 2019 Jan 22;13(1):143-151 [PMID: 30525446]
  12. Nat Rev Immunol. 2013 Oct;13(10):755-63 [PMID: 24013185]
  13. Circulation. 2008 Jul 8;118(2):140-8 [PMID: 18574049]
  14. Transpl Immunol. 2004 Apr;12(3-4):367-77 [PMID: 15157928]
  15. Acta Biomater. 2018 Oct 15;80:66-84 [PMID: 30232030]
  16. Biomaterials. 2016 Jun;91:166-181 [PMID: 27031811]
  17. Magn Reson Imaging. 1991;9(1):101-6 [PMID: 2056847]
  18. J Immunol Regen Med. 2018 Mar;1:57-66 [PMID: 30101208]
  19. Magn Reson Med. 2017 Aug;78(2):713-720 [PMID: 27610596]
  20. Lab Invest. 2012 Apr;92(4):636-45 [PMID: 22330343]
  21. Magn Reson Med. 2007 Oct;58(4):725-34 [PMID: 17899609]
  22. Clin Orthop Relat Res. 1999 Oct;(367 Suppl):S333-43 [PMID: 10546657]
  23. FASEB J. 2007 Jun;21(8):1647-54 [PMID: 17284484]
  24. J Neurosci Methods. 2000 Dec 15;104(1):99-109 [PMID: 11163416]
  25. J Magn Reson Imaging. 1994 Jul-Aug;4(4):609-13 [PMID: 7949689]
  26. Nat Protoc. 2009;4(10):1440-53 [PMID: 19798079]
  27. Med Phys. 1999 Nov;26(11):2311-22 [PMID: 10587212]
  28. PLoS One. 2015 Oct 20;10(10):e0140238 [PMID: 26485716]
  29. NMR Biomed. 2014 Mar;27(3):261-71 [PMID: 24353148]
  30. Med Phys. 2013 Jun;40(6):064301 [PMID: 23718620]
  31. Tissue Eng Part A. 2009 Jul;15(7):1687-94 [PMID: 19125644]
  32. Magn Reson Med. 2017 Jun;77(6):2263-2271 [PMID: 27385530]
  33. Nat Biotechnol. 2005 Aug;23(8):945-6 [PMID: 16082363]
  34. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2005 Aug 20;61(8):1140-3 [PMID: 16132032]
  35. Front Immunol. 2014 Nov 04;5:510 [PMID: 25408693]
  36. Biomaterials. 2013 Jan;34(4):1033-40 [PMID: 23158935]
  37. Exp Biol Med (Maywood). 2016 May;241(10):1084-97 [PMID: 27229903]
  38. J Magn Reson Imaging. 2015 Aug;42(2):488-94 [PMID: 25425244]
  39. Magn Reson Med. 1995 Dec;34(6):910-4 [PMID: 8598820]
  40. Biomaterials. 2012 Apr;33(10):2858-71 [PMID: 22244696]
  41. Mol Imaging Biol. 2018 Feb;20(1):1-3 [PMID: 29181818]
  42. PLoS One. 2013 Nov 06;8(11):e77089 [PMID: 24223118]
  43. PLoS One. 2016 Oct 11;11(10):e0163704 [PMID: 27727294]
  44. Magn Reson Med. 1987 Dec;5(6):548-54 [PMID: 3437815]
  45. Sci Rep. 2017 Aug 29;7(1):9808 [PMID: 28851959]
  46. J Comput Assist Tomogr. 1991 Mar-Apr;15(2):297-303 [PMID: 2002111]
  47. Magn Reson Med. 2015 Jan;73(1):367-75 [PMID: 24478194]
  48. J Am Chem Soc. 2014 Jun 18;136(24):8524-7 [PMID: 24884816]
  49. Oncoimmunology. 2016 Feb 18;5(5):e1143996 [PMID: 27467963]
  50. NMR Biomed. 2013 Jul;26(7):860-71 [PMID: 23606473]
  51. AJNR Am J Neuroradiol. 1987 Nov-Dec;8(6):1057-62 [PMID: 3120532]
  52. Magn Reson Med. 2011 Oct;66(4):1116-22 [PMID: 21394779]
  53. Mol Imaging. 2005 Jul-Sep;4(3):143-64 [PMID: 16194447]
  54. Acta Biomater. 2017 Nov;63:50-63 [PMID: 28917705]
  55. Eur Heart J Cardiovasc Imaging. 2015 Jun;16(6):612-20 [PMID: 25733209]
  56. Sci Rep. 2013;3:1280 [PMID: 23412352]
  57. Nat Biotechnol. 2005 Aug;23(8):983-7 [PMID: 16041364]
  58. Magn Reson Med. 2013 Jun;69(6):1683-90 [PMID: 22837054]
  59. Biotechniques. 2011 Apr;50(4):229-34 [PMID: 21548906]
  60. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 May-Jun;4(3):329-43 [PMID: 22354793]
  61. Acta Biomater. 2009 Jan;5(1):1-13 [PMID: 18938117]
  62. Magn Reson Med. 2015 Jun;73(6):2225-33 [PMID: 25042821]
  63. J Neurosci Methods. 2013 Sep 30;219(1):27-40 [PMID: 23816399]
  64. Magn Reson Med. 2011 Oct;66(4):931-6 [PMID: 21381109]
  65. Magn Reson Med. 2015 Aug;74(2):537-43 [PMID: 25163853]
  66. Brain Res. 2007 May 11;1145:177-89 [PMID: 17320839]
  67. Magn Reson Med. 2013 Apr;69(4):1056-62 [PMID: 22628001]
  68. Magn Reson Med. 2011 Apr;65(4):1144-53 [PMID: 21305593]
  69. J Comput Assist Tomogr. 1984 Jun;8(3):514-22 [PMID: 6609942]
  70. PLoS One. 2011;6(12):e29040 [PMID: 22216163]
  71. J Magn Reson Imaging. 2014 Jul;40(1):162-70 [PMID: 25050436]

Grants

  1. R01 EB016629/NIBIB NIH HHS
  2. R01 NS082226/NINDS NIH HHS
  3. R01 NS122768/NINDS NIH HHS

MeSH Term

Animals
Brain
Extracellular Matrix
Fluorocarbons
Hydrogels
Image Enhancement
Macrophages
Magnetic Resonance Spectroscopy
Phantoms, Imaging
Rats, Sprague-Dawley
Signal-To-Noise Ratio
Stroke

Chemicals

Fluorocarbons
Hydrogels

Word Cloud

Created with Highcharts 10.0.0FimagingbrainmacrophagesECMhydrogelefficientacquisitionsequencedetectionF-MRmatriximplantedsequencesSNRfastFISPproducedRAREImagingparameterssizedetermined02PFPEsystematicoptimizationmacrophageperfluorocarbonPFC-labeledcanprovideuniqueinsightparticipationspatio-temporaldynamicsinflammatoryeventsbiodegradationextracellularstrokecavitydeterminestrategyfivecommonlyusedoptimizedusingdesignexperimentDoEapproachcomparedbasedsignal-to-noiseratiosteady-stateprecessionsignalfollowedrapidrelaxationenhancementmulti-slicemulti-echoMSMElowangleshotFLASHzeroechotimeZTEsignificantlylessmatrix/voxelslicethicknessnumberaveragesaccuracyietruenessprecisionobjectidentificationreducingpartialvolumeeffectsanalysispointspreadfunctionPSF96 × 9635 mmlowestlimitLOD85 mM119 mM43 mM181 mMthresholdphantomPFC-labeledinvadingillustratedimpactparameterchangesprovidesframeworkaccuratevisualizationF-labeleddistributiondensitywillenhanceunderstandingcontributionperiphery-derivedbioscaffolddegradationroletissueregenerationMRimagedetectinvasionstroke-damaged19MRIAcquisitionBrainHydrogelMacrophageNanoemulsionOptimizationPerfluorocarbonSequenceStroke

Similar Articles

Cited By