Molecular analysis and epidemiological typing of Vancomycin-resistant Enterococcus outbreak strains.
Anbjørg Rangberg, Astri Lervik Larsen, Oliver Kacelnik, Hanne Skarpodde Sæther, Marthe Bjørland, Jetmund Ringstad, Christine Monceyron Jonassen
Author Information
Anbjørg Rangberg: Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway. anbjra@so-hf.no.
Astri Lervik Larsen: Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway.
Oliver Kacelnik: Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway.
Hanne Skarpodde Sæther: Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway.
Marthe Bjørland: Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway.
Jetmund Ringstad: Department of Infectious Diseases, Østfold Hospital Trust, Grålum, Norway.
Christine Monceyron Jonassen: Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway.
中文译文
English
Outbreaks of multidrug resistant bacteria including vancomycin-resistant enterococci (VRE) in healthcare institutions are increasing in Norway, despite a low level of resistance compared to other European countries. In this study, we describe epidemiological relatedness of vancomycin-resistant Enterococcus faecium isolated during an outbreak at a Norwegian hospital in 2012-2013. During the outbreak, 9454 fecal samples were screened for VRE by culture and/or PCR. Isolates from 86 patients carrying the vanA resistance gene were characterized using pulsed-field gel electrophoresis (PFGE), MALDI-TOF mass spectrometry and single nucleotide polymorphism typing. PFGE revealed two main clusters, the first comprised 56 isolates related to an initial outbreak strain, and the second comprised 21 isolates originating from a later introduced strain, together causing two partly overlapping outbreaks. Nine isolates, including the index case were not related to the two outbreak clusters. In conclusion, the epidemiological analyses show that the outbreak was discovered by coincidence, and that infection control measures were successful. All typing methods identified the two outbreak clusters, and the experiment congruence between the MALDI-TOF and the PFGE clustering was 63.2%, with a strong correlation (r = 72.4%). Despite lower resolution compared to PFGE, MALDI-TOF may provide an efficient mean for real-time monitoring spread of infection.
Diagn Microbiol Infect Dis. 2003 Jan;45(1):81-4
[PMID: 12573556 ]
Clin Microbiol Infect. 2019 Sep;25(9):1086-1095
[PMID: 31039443 ]
Clin Microbiol Infect. 2018 Apr;24(4):355-360
[PMID: 29117578 ]
J Clin Microbiol. 2002 Jun;40(6):1963-71
[PMID: 12037049 ]
Heliyon. 2017 Dec 28;3(12):e00473
[PMID: 29322099 ]
Proteomics Clin Appl. 2013 Dec;7(11-12):767-78
[PMID: 24123965 ]
Lett Appl Microbiol. 2016 Jun;62(6):452-8
[PMID: 27198622 ]
mBio. 2012 Jul 17;3(4):e00151-12
[PMID: 22807567 ]
Microb Genom. 2019 May;5(5):
[PMID: 31099741 ]
Biomed Res Int. 2014;2014:575367
[PMID: 25003118 ]
Microbiology (Reading). 2009 Jun;155(Pt 6):1749-1757
[PMID: 19383684 ]
PLoS One. 2011;6(12):e29189
[PMID: 22195020 ]
J Antimicrob Chemother. 2015 Sep;70(9):2474-82
[PMID: 26031466 ]
Acta Clin Belg. 2017 Aug;72(4):219-225
[PMID: 27344933 ]
J Hosp Infect. 2016 Jun;93(2):175-80
[PMID: 27112046 ]
Int J Food Microbiol. 2018 Jul 20;277:50-57
[PMID: 29684765 ]
Antimicrob Agents Chemother. 1989 Sep;33(9):1588-91
[PMID: 2554802 ]
J Clin Microbiol. 1990 Sep;28(9):2059-63
[PMID: 1977766 ]
PLoS One. 2015 Apr 10;10(4):e0120624
[PMID: 25860943 ]
J Clin Microbiol. 2012 Sep;50(9):2918-31
[PMID: 22740710 ]
Diagn Microbiol Infect Dis. 2010 Jul;67(3):291-3
[PMID: 20542208 ]
Infect Genet Evol. 2010 Oct;10(7):866-75
[PMID: 20692376 ]
Infect Control Hosp Epidemiol. 2013 Jan;34(1):1-14
[PMID: 23221186 ]
Microb Drug Resist. 2018 Jun 29;:
[PMID: 29957103 ]
J Microbiol Methods. 2014 May;100:58-69
[PMID: 24614010 ]
Nature. 2000 Aug 17;406(6797):775-81
[PMID: 10963607 ]
Eur J Clin Microbiol Infect Dis. 2017 Mar;36(3):495-499
[PMID: 27889877 ]
J Antimicrob Chemother. 2014 Feb;69(2):500-5
[PMID: 24092659 ]
Front Microbiol. 2015 Aug 05;6:791
[PMID: 26300860 ]
Virulence. 2012 Aug 15;3(5):421-33
[PMID: 23076243 ]
Eur J Clin Microbiol Infect Dis. 2017 Nov;36(11):2007-2020
[PMID: 28639162 ]
J Bacteriol. 1993 Jan;175(1):117-27
[PMID: 8380148 ]
J Microbiol Methods. 2019 Jul;162:62-68
[PMID: 30605699 ]
BMC Infect Dis. 2014 Mar 31;14:177
[PMID: 24678646 ]
J Antimicrob Chemother. 2013 Apr;68(4):731-42
[PMID: 23208830 ]
BMC Infect Dis. 2007 Jun 21;7:61
[PMID: 17584935 ]
Diagn Microbiol Infect Dis. 2008 Sep;62(1):81-5
[PMID: 18508225 ]
Diagn Microbiol Infect Dis. 2017 Apr;87(4):299-307
[PMID: 28109550 ]
Appl Environ Microbiol. 2008 Sep;74(17):5402-7
[PMID: 18606788 ]
J Clin Microbiol. 2012 Nov;50(11):3659-63
[PMID: 22972822 ]
Infect Dis Clin North Am. 2016 Jun;30(2):415-439
[PMID: 27208766 ]
J Clin Microbiol. 2000 Nov;38(11):4242-5
[PMID: 11060099 ]
Lett Appl Microbiol. 2013 Aug;57(2):144-50
[PMID: 23617594 ]
Eur J Clin Microbiol Infect Dis. 2018 Jan;37(1):57-68
[PMID: 28924947 ]
Curr Opin Infect Dis. 2013 Aug;26(4):338-44
[PMID: 23743816 ]
Int J Infect Dis. 2013 Apr;17(4):e240-6
[PMID: 23195640 ]
J Clin Microbiol. 2011 Jan;49(1):367-72
[PMID: 20980566 ]
Gut Microbes. 2016;7(1):90-6
[PMID: 26939857 ]
Infect Genet Evol. 2017 Oct;54:74-80
[PMID: 28627467 ]
Infect Control Hosp Epidemiol. 2008 Nov;29(11):996-1011
[PMID: 18947320 ]
J Antimicrob Chemother. 2017 Aug 1;72(8):2184-2190
[PMID: 28541565 ]
Anal Biochem. 2019 May 15;573:17-29
[PMID: 30826351 ]
J Hosp Infect. 2019 Jun;102(2):189-199
[PMID: 30721732 ]
J Clin Microbiol. 1995 Sep;33(9):2233-9
[PMID: 7494007 ]
N Engl J Med. 1988 Jul 21;319(3):157-61
[PMID: 2968517 ]
Antimicrob Resist Infect Control. 2017 May 16;6:48
[PMID: 28515904 ]
Disease Outbreaks
Feces
Gram-Positive Bacterial Infections
Humans
Medical Records
Multilocus Sequence Typing
Phylogeny
Polymorphism, Single Nucleotide
Seasons
Vancomycin-Resistant Enterococci