Towards perturbation prediction of biological networks using deep learning.

Diya Li, Jianxi Gao
Author Information
  1. Diya Li: Rensselaer Polytechnic Institute, Department of Computer Science, Troy, 12180, USA.
  2. Jianxi Gao: Rensselaer Polytechnic Institute, Department of Computer Science, Troy, 12180, USA. gaoj8@rpi.edu. ORCID

Abstract

The mapping of the physical interactions between biochemical entities enables quantitative analysis of dynamic biological living systems. While developing a precise dynamical model on biological entity interaction is still challenging due to the limitation of kinetic parameter detection of the underlying biological system. This challenge promotes the needs of topology-based models to predict biochemical perturbation patterns. Pure topology-based model, however, is limited on the scale and heterogeneity of biological networks. Here we propose a learning based model that adopts graph convolutional networks to learn the implicit perturbation pattern factors and thus enhance the perturbation pattern prediction on the basic topology model. Our experimental studies on 87 biological models show an average of 73% accuracy on perturbation pattern prediction and outperforms the best topology-based model by 7%, indicating that the graph-driven neural network model is robust and beneficial for accurate prediction of the perturbation spread modeling and giving an inspiration of the implementation of the deep neural networks on biological network modeling.

References

  1. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  2. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  3. Nat Phys. 2013;9: [PMID: 24319492]
  4. Bioinformatics. 2008 Mar 15;24(6):880-1 [PMID: 18252737]
  5. Nat Biotechnol. 2013 Aug;31(8):720-5 [PMID: 23851447]
  6. PLoS One. 2013 Sep 19;8(9):e71786 [PMID: 24069138]
  7. Science. 2007 Jan 12;315(5809):233-7 [PMID: 17218526]
  8. PLoS Comput Biol. 2017 Mar 31;13(3):e1005456 [PMID: 28362798]
  9. Science. 2015 Feb 20;347(6224):1257601 [PMID: 25700523]
  10. Nucleic Acids Res. 2015 Jan;43(Database issue):D542-8 [PMID: 25414348]
  11. J Theor Biol. 2006 Sep 7;242(1):164-70 [PMID: 16574157]
  12. Curr Protein Pept Sci. 2009 Apr;10(2):161-72 [PMID: 19355983]
  13. Cell. 2014 Nov 20;159(5):1212-1226 [PMID: 25416956]
  14. Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6375-E6383 [PMID: 29925605]
  15. Nat Commun. 2015 May 20;6:7186 [PMID: 25990707]
  16. Nature. 2016 Feb 18;530(7590):307-12 [PMID: 26887493]
  17. BMC Syst Biol. 2010 Nov 18;4:157 [PMID: 21087478]
  18. Cell. 2011 Mar 18;144(6):986-98 [PMID: 21414488]

Word Cloud

Created with Highcharts 10.0.0biologicalmodelperturbationnetworkspredictiontopology-basedpatternbiochemicalmodelslearningneuralnetworkmodelingdeepmappingphysicalinteractionsentitiesenablesquantitativeanalysisdynamiclivingsystemsdevelopingprecisedynamicalentityinteractionstillchallengingduelimitationkineticparameterdetectionunderlyingsystemchallengepromotesneedspredictpatternsPurehoweverlimitedscaleheterogeneityproposebasedadoptsgraphconvolutionallearnimplicitfactorsthusenhancebasictopologyexperimentalstudies87showaverage73%accuracyoutperformsbest7%indicatinggraph-drivenrobustbeneficialaccuratespreadgivinginspirationimplementationTowardsusing

Similar Articles

Cited By