Unveiling of Concealed Processes for the Degradation of Pharmaceutical Compounds by sp.

Bo Ram Kang, Min Sung Kim, Tae Kwon Lee
Author Information
  1. Bo Ram Kang: Department of Environmental Engineering, Yonsei University, Wonju 26493, Korea.
  2. Min Sung Kim: Department of Environmental Engineering, Yonsei University, Wonju 26493, Korea.
  3. Tae Kwon Lee: Department of Environmental Engineering, Yonsei University, Wonju 26493, Korea. tklee@yonsei.ac.kr. ORCID

Abstract

The presence of pharmaceutical products has raised emerging biorisks in aquatic environments. Fungi have been considered in sustainable approaches for the degradation of pharmaceutical compounds from aquatic environments. Soft rot fungi of the Ascomycota phylum are the most widely distributed among fungi, but their ability to biodegrade pharmaceuticals has not been studied as much as that of white rot fungi of the Basidiomycota phylum. Herein, we evaluated the capacity of the soft rot fungus sp. B2B to degrade pharmaceuticals under treatment of woody and nonwoody lignocellulosic biomasses. Nonwoody rice straw induced laccase activity fivefold compared with that in YSM medium containing polysaccharide. But B2B preferentially degraded polysaccharide over lignin regions in woody sources, leading to high concentrations of sugar. Hence, intermediate products from saccharification may inhibit laccase activity and thereby halt the biodegradation of pharmaceutical compounds. These results provide fundamental insights into the unique characteristics of pharmaceutical degradation by soft rot fungus sp. in the presence of preferred substrates during delignification.

Keywords

References

  1. Appl Environ Microbiol. 2001 May;67(5):2088-94 [PMID: 11319086]
  2. Mycol Res. 2003 Feb;107(Pt 2):231-5 [PMID: 12747335]
  3. Annu Rev Plant Biol. 2003;54:519-46 [PMID: 14503002]
  4. Prikl Biokhim Mikrobiol. 2004 Jan-Feb;40(1):5-23 [PMID: 15029691]
  5. Int Microbiol. 2005 Sep;8(3):195-204 [PMID: 16200498]
  6. Appl Microbiol Biotechnol. 2006 Jul;71(4):493-501 [PMID: 16283298]
  7. FEMS Microbiol Rev. 2006 Mar;30(2):215-42 [PMID: 16472305]
  8. Mycologia. 2006 Nov-Dec;98(6):1076-87 [PMID: 17486982]
  9. FEMS Microbiol Rev. 2008 May;32(3):501-21 [PMID: 18371173]
  10. Bioresour Technol. 2010 Apr;101(7):2331-50 [PMID: 19948398]
  11. Bioresour Technol. 2010 Dec;101(24):9815-8 [PMID: 20708927]
  12. Nat Rev Microbiol. 2011 Mar;9(3):177-92 [PMID: 21297669]
  13. N Biotechnol. 2011 Oct;28(6):616-26 [PMID: 21642024]
  14. Appl Environ Microbiol. 2011 Sep;77(17):6076-84 [PMID: 21764951]
  15. Int J Hyg Environ Health. 2011 Nov;214(6):442-8 [PMID: 21885335]
  16. Appl Biochem Biotechnol. 2011 Dec;165(7-8):1754-69 [PMID: 21947763]
  17. Appl Environ Microbiol. 2012 May;78(10):3693-705 [PMID: 22389369]
  18. Appl Biochem Biotechnol. 2012 Jun;167(4):685-93 [PMID: 22588735]
  19. N Biotechnol. 2013 Sep 25;30(6):803-13 [PMID: 23831273]
  20. PLoS One. 2013 Jun 20;8(6):e66146 [PMID: 23840414]
  21. J Biol Eng. 2014 Jan 02;8(1):1 [PMID: 24382027]
  22. Sci Total Environ. 2014 May 15;481:90-9 [PMID: 24589758]
  23. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8 [PMID: 24958869]
  24. PLoS One. 2014 Oct 16;9(10):e110000 [PMID: 25330077]
  25. FEMS Microbiol Ecol. 2015 Apr;91(4):null [PMID: 25778509]
  26. Appl Microbiol Biotechnol. 2016 Mar;100(5):2381-99 [PMID: 26536880]
  27. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  28. Trends Biochem Sci. 2016 Jul;41(7):633-645 [PMID: 27211037]
  29. Bioresour Technol. 2017 Jan;224:1-12 [PMID: 27889353]
  30. Water Res. 2017 Feb 1;109:217-226 [PMID: 27898334]
  31. Front Microbiol. 2017 May 16;8:832 [PMID: 28559880]
  32. Biotechnol Biofuels. 2017 Sep 13;10:218 [PMID: 28924453]
  33. Front Microbiol. 2017 Sep 20;8:1792 [PMID: 28979245]
  34. FEMS Microbiol Rev. 2017 Nov 1;41(6):941-962 [PMID: 29088355]
  35. J Environ Manage. 2018 Feb 1;207:396-404 [PMID: 29190482]
  36. J Environ Manage. 2018 Apr 15;212:415-423 [PMID: 29455149]
  37. Microbiol Res. 2019 Jul 25;228:126299 [PMID: 31422231]
  38. Mol Ecol. 1993 Apr;2(2):113-8 [PMID: 8180733]
  39. J Biol Chem. 1997 Jan 10;272(2):924-8 [PMID: 8995383]
  40. Appl Microbiol Biotechnol. 1998 May;49(5):545-51 [PMID: 9650252]

Grants

  1. 2017R1D1A3B03029787/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0pharmaceuticalrotcompoundsfungisppresenceproductsaquaticenvironmentsdegradationAscomycotaphylumpharmaceuticalssoftfungusB2BwoodylaccaseactivitypolysaccharidebiodegradationraisedemergingbiorisksFungiconsideredsustainableapproachesSoftwidelydistributedamongabilitybiodegradestudiedmuchwhiteBasidiomycotaHereinevaluatedcapacitydegradetreatmentnonwoodylignocellulosicbiomassesNonwoodyricestrawinducedfivefoldcomparedYSMmediumcontainingpreferentiallydegradedligninregionssourcesleadinghighconcentrationssugarHenceintermediatesaccharificationmayinhibittherebyhaltresultsprovidefundamentalinsightsuniquecharacteristicspreferredsubstratesdelignificationUnveilingConcealedProcessesDegradationPharmaceuticalCompoundsNeopestalotiopsisextracellularenzymes

Similar Articles

Cited By