Cell migration through three-dimensional confining pores: speed accelerations by deformation and recoil of the nucleus.

Marina Krause, Feng Wei Yang, Mariska Te Lindert, Philipp Isermann, Jan Schepens, Ralph J A Maas, Chandrasekhar Venkataraman, Jan Lammerding, Anotida Madzvamuse, Wiljan Hendriks, Joost Te Riet, Katarina Wolf
Author Information
  1. Marina Krause: Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
  2. Feng Wei Yang: Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK.
  3. Mariska Te Lindert: Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
  4. Philipp Isermann: Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
  5. Jan Schepens: Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
  6. Ralph J A Maas: Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
  7. Chandrasekhar Venkataraman: Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK.
  8. Jan Lammerding: Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
  9. Anotida Madzvamuse: Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK.
  10. Wiljan Hendriks: Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
  11. Joost Te Riet: Department of Tumor Immunology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
  12. Katarina Wolf: Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.

Abstract

Directional cell migration in dense three-dimensional (3D) environments critically depends upon shape adaptation and is impeded depending on the size and rigidity of the nucleus. Accordingly, the nucleus is primarily understood as a physical obstacle; however, its pro-migratory functions by stepwise deformation and reshaping remain unclear. Using atomic force spectroscopy, time-lapse fluorescence microscopy and shape change analysis tools, we determined the nuclear size, deformability, morphology and shape change of HT1080 fibrosarcoma cells expressing the Fucci cell cycle indicator or being pre-treated with chromatin-decondensating agent TSA. We show oscillating peak accelerations during migration through 3D collagen matrices and microdevices that occur during shape reversion of deformed nuclei (recoil), and increase with confinement. During G1 cell-cycle phase, nucleus stiffness was increased and yielded further increased speed fluctuations together with sustained cell migration rates in confinement when compared to interphase populations or to periods of intrinsic nuclear softening in the S/G2 cell-cycle phase. Likewise, nuclear softening by pharmacological chromatin decondensation or after lamin A/C depletion reduced peak oscillations in confinement. In conclusion, deformation and recoil of the stiff nucleus contributes to saltatory locomotion in dense tissues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.

Keywords

Associated Data

Dryad | 10.5061/dryad.c806hk2
figshare | 10.6084/m9.figshare.c.4518938

References

  1. J Biol Chem. 2013 Mar 22;288(12):8610-8618 [PMID: 23355469]
  2. Curr Opin Cell Biol. 2016 Jun;40:32-40 [PMID: 26895141]
  3. Sci Rep. 2015 Sep 24;5:14391 [PMID: 26399741]
  4. J Cell Sci. 2004 Aug 15;117(Pt 18):4277-87 [PMID: 15292402]
  5. Nat Cell Biol. 2007 Aug;9(8):893-904 [PMID: 17618273]
  6. Mol Biol Cell. 2017 Jul 7;28(14):1984-1996 [PMID: 28057760]
  7. J Cell Biol. 2017 Jan 2;216(1):93-100 [PMID: 27998990]
  8. Mol Pharmacol. 2013 Mar;83(3):594-604 [PMID: 23229510]
  9. Biophys J. 2008 Apr 1;94(7):2819-31 [PMID: 17993500]
  10. J Cell Sci. 2010 Jul 1;123(Pt 13):2207-17 [PMID: 20530575]
  11. Biophys J. 2014 Jan 7;106(1):7-15 [PMID: 24411232]
  12. Science. 2016 Apr 15;352(6283):353-8 [PMID: 27013428]
  13. PLoS One. 2018 Apr 12;13(4):e0195664 [PMID: 29649271]
  14. Nat Struct Mol Biol. 2010 Apr;17(4):430-7 [PMID: 20228802]
  15. Trends Cell Biol. 2011 Jan;21(1):6-11 [PMID: 20951589]
  16. Integr Biol (Camb). 2015 Dec;7(12):1534-46 [PMID: 26549481]
  17. Cell Cycle. 2014;13(6):953-60 [PMID: 24552821]
  18. ACS Nano. 2014 Apr 22;8(4):3821-8 [PMID: 24673613]
  19. Cell. 2008 Feb 8;132(3):487-98 [PMID: 18267078]
  20. Biomaterials. 2014 Jan;35(2):611-9 [PMID: 24140047]
  21. PLoS One. 2012;7(8):e42522 [PMID: 22905142]
  22. Dev Cell. 2016 Aug 22;38(4):371-83 [PMID: 27554857]
  23. Nat Rev Cancer. 2003 Jun;3(6):453-8 [PMID: 12778135]
  24. Phys Biol. 2013 Dec;10(6):065002 [PMID: 24304807]
  25. J Leukoc Biol. 2018 Aug;104(2):239-251 [PMID: 29601096]
  26. Nat Commun. 2016 Mar 15;7:10997 [PMID: 26975831]
  27. Biophys J. 2012 Nov 21;103(10):2060-70 [PMID: 23200040]
  28. J Histochem Cytochem. 2008 Aug;56(8):711-21 [PMID: 18474937]
  29. J Cell Biol. 2014 Mar 3;204(5):669-82 [PMID: 24567359]
  30. Compr Physiol. 2011 Apr;1(2):783-807 [PMID: 23737203]
  31. Nat Rev Cancer. 2017 Feb;17(2):131-140 [PMID: 27909339]
  32. Ultramicroscopy. 2011 Dec;111(12):1659-69 [PMID: 22094372]
  33. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15619-24 [PMID: 17893336]
  34. Biophys J. 2009 May 20;96(10):4319-25 [PMID: 19450502]
  35. Oncotarget. 2014 Sep 30;5(18):8690-702 [PMID: 25238264]
  36. Cancer Res. 2004 Jun 15;64(12):4251-6 [PMID: 15205338]
  37. J Cell Biol. 2013 Jun 24;201(7):1069-84 [PMID: 23798731]
  38. Biophys J. 2015 Sep 1;109(5):900-13 [PMID: 26331248]
  39. Prog Biophys Mol Biol. 2014 Aug;115(2-3):76-92 [PMID: 25008017]
  40. Philos Trans R Soc Lond B Biol Sci. 2019 Aug 19;374(1779):20180225 [PMID: 31431171]
  41. ACS Nano. 2016 Jul 26;10(7):6437-48 [PMID: 27268411]
  42. Science. 2013 Aug 30;341(6149):1240104 [PMID: 23990565]
  43. Cell Mol Bioeng. 2014 Sep 1;7(3):293-306 [PMID: 25436017]
  44. J Cell Biol. 2015 Aug 17;210(4):583-94 [PMID: 26261182]
  45. Methods Mol Biol. 2018;1840:101-118 [PMID: 30141042]
  46. Lab Chip. 2012 Oct 7;12(19):3774-8 [PMID: 22864314]
  47. Mol Biol Cell. 2008 May;19(5):2003-13 [PMID: 18305103]
  48. J Cell Sci. 2009 Oct 1;122(Pt 19):3531-41 [PMID: 19737819]
  49. Arch Histol Cytol. 2010;73(3):149-63 [PMID: 22572182]
  50. Nucleus. 2011 Jul-Aug;2(4):310-9 [PMID: 21941106]
  51. Nat Rev Mol Cell Biol. 2005 Feb;6(2):139-49 [PMID: 15688000]
  52. Nat Commun. 2018 Jun 22;9(1):2443 [PMID: 29934494]
  53. Intravital. 2012 Jul 01;1(1):32-43 [PMID: 29607252]
  54. Curr Opin Cell Biol. 2011 Feb;23(1):55-64 [PMID: 21109415]

Grants

  1. U54 CA210184/NCI NIH HHS

MeSH Term

Acceleration
Biophysical Phenomena
Cell Cycle
Cell Line, Tumor
Cell Movement
Cell Nucleus
Chromatin
Collagen
Humans

Chemicals

Chromatin
Collagen

Word Cloud

Created with Highcharts 10.0.0cellmigrationshapenucleusnuclearconfinementdeformationchangerecoilspeeddensethree-dimensional3Dsizecyclepeakaccelerationscell-cyclephaseincreasedsofteningchromatintumourDirectionalenvironmentscriticallydependsuponadaptationimpededdependingrigidityAccordinglyprimarilyunderstoodphysicalobstaclehoweverpro-migratoryfunctionsstepwisereshapingremainunclearUsingatomicforcespectroscopytime-lapsefluorescencemicroscopyanalysistoolsdetermineddeformabilitymorphologyHT1080fibrosarcomacellsexpressingFucciindicatorpre-treatedchromatin-decondensatingagentTSAshowoscillatingcollagenmatricesmicrodevicesoccurreversiondeformednucleiincreaseG1stiffnessyieldedfluctuationstogethersustainedratescomparedinterphasepopulationsperiodsintrinsicS/G2LikewisepharmacologicaldecondensationlaminA/Cdepletionreducedoscillationsconclusionstiffcontributessaltatorylocomotiontissuesarticlepartdiscussionmeetingissue'Forcescancer:interdisciplinaryapproachesmechanobiology'Cellconfiningpores:condensationoscillation

Similar Articles

Cited By