Horizontal gene transfer overrides mutation in colonizing the mammalian gut.

Nelson Frazão, Ana Sousa, Michael Lässig, Isabel Gordo
Author Information
  1. Nelson Frazão: Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal. ORCID
  2. Ana Sousa: Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.
  3. Michael Lässig: Institute for Biological Physics, University of Cologne, 50923 Cologne, Germany mlaessig@uni-koeln.de igordo@igc.gulbenkian.pt.
  4. Isabel Gordo: Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal; mlaessig@uni-koeln.de igordo@igc.gulbenkian.pt.

Abstract

Bacteria evolve by mutation accumulation in laboratory experiments, but tempo and mode of evolution in natural environments are largely unknown. Here, we study the ubiquitous natural process of host colonization by commensal bacteria. We show, by experimental evolution of in the mouse intestine, that the ecology of the gut controls the pace and mode of evolution of a new invading bacterial strain. If a resident strain is present in the gut, the invading strain evolves by rapid horizontal gene transfer (HGT), which precedes and outweighs evolution by accumulation of mutations. HGT is driven by 2 bacteriophages carried by the resident strain, which cause an epidemic phage infection of the invader. These dynamics are followed by subsequent evolution by clonal interference of genetically diverse lineages of phage-carrying (lysogenic) bacteria. We show that the genes uptaken by HGT enhance the metabolism of specific gut carbon sources and provide a fitness advantage to lysogenic invader lineages. A minimal dynamical model explains the temporal pattern of phage epidemics and the complex evolutionary outcome of phage-mediated selection. We conclude that phage-driven HGT is a key eco-evolutionary driving force of gut colonization-it accelerates evolution and promotes genetic diversity of commensal bacteria.

Keywords

References

  1. Infect Immun. 2005 Dec;73(12):8039-49 [PMID: 16299298]
  2. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  3. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17621-6 [PMID: 23045666]
  4. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):8893-900 [PMID: 26195749]
  5. Curr Opin Microbiol. 2017 Aug;38:66-73 [PMID: 28527384]
  6. J Virol. 1977 Feb;21(2):554-9 [PMID: 319255]
  7. Nature. 2009 Oct 29;461(7268):1243-7 [PMID: 19838166]
  8. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  9. Nat Rev Genet. 2015 Aug;16(8):472-82 [PMID: 26184597]
  10. Genetica. 1992;86(1-3):259-67 [PMID: 1468648]
  11. Proc Natl Acad Sci U S A. 1965 Feb;53:378-85 [PMID: 14294071]
  12. Nature. 1975 Jun 26;255(5511):735-7 [PMID: 1094307]
  13. Bacteriol Rev. 1953 Dec;17(4):269-337 [PMID: 13105613]
  14. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17209-14 [PMID: 12481034]
  15. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7427-32 [PMID: 15123798]
  16. World J Gastroenterol. 2015 Aug 7;21(29):8787-803 [PMID: 26269668]
  17. Nat Med. 2015 Oct;21(10):1228-34 [PMID: 26366711]
  18. J Virol. 2010 Oct;84(19):10200-8 [PMID: 20660193]
  19. Front Microbiol. 2017 Jun 20;8:1108 [PMID: 28676794]
  20. Nat Microbiol. 2017 Jan 09;2:16251 [PMID: 28067906]
  21. PLoS Genet. 2014 Mar 06;10(3):e1004182 [PMID: 24603313]
  22. Cell Rep. 2015 Mar 24;10(11):1861-71 [PMID: 25801025]
  23. Nat Rev Microbiol. 2011 Apr;9(4):233-43 [PMID: 21358670]
  24. ISME J. 2016 Oct;10(10):2553-5 [PMID: 27070941]
  25. Nat Commun. 2015 Nov 30;6:8945 [PMID: 26615893]
  26. PLoS Genet. 2016 Feb 12;12(2):e1005861 [PMID: 26871586]
  27. Nature. 2014 Mar 6;507(7490):57-61 [PMID: 24572367]
  28. Mol Ecol. 2017 Apr;26(7):1802-1817 [PMID: 27661780]
  29. ISME J. 2018 Apr;12(4):1127-1141 [PMID: 29416123]
  30. Mol Biol Evol. 2017 Nov 1;34(11):2879-2892 [PMID: 28961745]
  31. Nature. 2013 Jul 11;499(7457):219-22 [PMID: 23748443]
  32. Nat Rev Microbiol. 2017 Jul;15(7):397-408 [PMID: 28461690]
  33. Curr Opin Microbiol. 2017 Aug;38:114-121 [PMID: 28591676]
  34. Nature. 1959 Oct 3;184(Suppl 14):1079-80 [PMID: 14429381]
  35. J R Soc Interface. 2017 Dec;14(137): [PMID: 29263125]
  36. Curr Opin Microbiol. 2003 Aug;6(4):417-24 [PMID: 12941415]
  37. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  38. Science. 2017 Mar 17;355(6330):1211-1215 [PMID: 28302859]
  39. Curr Biol. 2006 Oct 24;16(20):2048-52 [PMID: 17055985]
  40. Genome Med. 2016 Apr 27;8(1):51 [PMID: 27122046]
  41. Curr Biol. 2006 Sep 5;16(17):R705-10 [PMID: 16950097]
  42. Nature. 2010 Jul 15;466(7304):334-8 [PMID: 20631792]
  43. Curr Protoc Mol Biol. 2001 Nov;Chapter 2:Unit 2.4 [PMID: 18265184]
  44. PLoS Genet. 2016 Nov 3;12(11):e1006420 [PMID: 27812114]
  45. ISME J. 2017 Oct;11(10):2181-2194 [PMID: 28509909]
  46. J Bacteriol. 1994 Jun;176(11):3140-7 [PMID: 8195066]
  47. Nat Commun. 2010;1:147 [PMID: 21266997]
  48. Bioinformatics. 2011 Apr 1;27(7):1009-10 [PMID: 21278367]
  49. PLoS One. 2013;8(3):e59043 [PMID: 23536852]

MeSH Term

Algorithms
Animals
Bacteriophages
Biological Evolution
Escherichia coli
Gastrointestinal Microbiome
Gene Transfer, Horizontal
Genome, Bacterial
Genomics
Intestinal Mucosa
Mice
Models, Biological
Mutation
Symbiosis

Word Cloud

Created with Highcharts 10.0.0evolutiongutstrainHGTmutationbacteriagenetransferaccumulationmodenaturalcommensalshowinvadingbacterialresidenthorizontalphageinvaderlineageslysogenicBacteriaevolvelaboratoryexperimentstempoenvironmentslargelyunknownstudyubiquitousprocesshostcolonizationexperimentalmouseintestineecologycontrolspacenewpresentevolvesrapidprecedesoutweighsmutationsdriven2bacteriophagescarriedcauseepidemicinfectiondynamicsfollowedsubsequentclonalinterferencegeneticallydiversephage-carryinggenesuptakenenhancemetabolismspecificcarbonsourcesprovidefitnessadvantageminimaldynamicalmodelexplainstemporalpatternepidemicscomplexevolutionaryoutcomephage-mediatedselectionconcludephage-drivenkeyeco-evolutionarydrivingforcecolonization-itacceleratespromotesgeneticdiversityHorizontaloverridescolonizingmammalianbacteriophagemicrobiota

Similar Articles

Cited By