Deep Learning and Neurology: A Systematic Review.

Aly Al-Amyn Valliani, Daniel Ranti, Eric Karl Oermann
Author Information
  1. Aly Al-Amyn Valliani: Department of Neurological Surgery, Mount Sinai Health System, 1 Gustave Levy Pl, New York, NY, 10029, USA.
  2. Daniel Ranti: Department of Neurological Surgery, Mount Sinai Health System, 1 Gustave Levy Pl, New York, NY, 10029, USA.
  3. Eric Karl Oermann: Department of Neurological Surgery, Mount Sinai Health System, 1 Gustave Levy Pl, New York, NY, 10029, USA. eric.oermann@mountsinai.org.

Abstract

Deciphering the massive volume of complex electronic data that has been compiled by hospital systems over the past decades has the potential to revolutionize modern medicine, as well as present significant challenges. Deep learning is uniquely suited to address these challenges, and recent advances in techniques and hardware have poised the field of medical machine learning for transformational growth. The clinical neurosciences are particularly well positioned to benefit from these advances given the subtle presentation of symptoms typical of neurologic disease. Here we review the various domains in which deep learning algorithms have already provided impetus for change-areas such as medical image analysis for the improved diagnosis of Alzheimer's disease and the early detection of acute neurologic events; medical image segmentation for quantitative evaluation of neuroanatomy and vasculature; connectome mapping for the diagnosis of Alzheimer's, autism spectrum disorder, and attention deficit hyperactivity disorder; and mining of microscopic electroencephalogram signals and granular genetic signatures. We additionally note important challenges in the integration of deep learning tools in the clinical setting and discuss the barriers to tackling the challenges that currently exist.

Keywords

References

  1. Biomed Inform Insights. 2016 Jan 19;8:1-10 [PMID: 26843812]
  2. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):583-90 [PMID: 24579188]
  3. Nature. 2017 Feb 2;542(7639):115-118 [PMID: 28117445]
  4. Dement Geriatr Cogn Disord. 2004;18(2):180-8 [PMID: 15211074]
  5. PLoS Med. 2018 Nov 6;15(11):e1002683 [PMID: 30399157]
  6. Neural Netw. 2018 Sep;105:104-111 [PMID: 29793128]
  7. Eur J Radiol. 2019 May;114:14-24 [PMID: 31005165]
  8. Neurobiol Dis. 2010 Mar;37(3):519-33 [PMID: 19944762]
  9. Front Aging Neurosci. 2019 Jun 27;11:150 [PMID: 31316369]
  10. Comput Biol Med. 2019 Jun;109:218-225 [PMID: 31078126]
  11. Nat Biomed Eng. 2019 Mar;3(3):173-182 [PMID: 30948806]
  12. JAMA. 2016 Dec 13;316(22):2402-2410 [PMID: 27898976]
  13. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  14. BMC Proc. 2012 May 21;6 Suppl 2:S10 [PMID: 22640436]
  15. Sci Rep. 2017 Sep 15;7(1):11707 [PMID: 28916782]
  16. Lancet. 2018 Dec 1;392(10162):2388-2396 [PMID: 30318264]
  17. Front Biosci (Landmark Ed). 2018 Jan 1;23(3):584-596 [PMID: 28930562]
  18. J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89 [PMID: 15977639]
  19. Neurology. 2010 Jan 19;74(3):201-9 [PMID: 20042704]
  20. Radiology. 2018 May;287(2):570-580 [PMID: 29381109]
  21. J Digit Imaging. 2017 Aug;30(4):392-399 [PMID: 28516233]
  22. IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40 [PMID: 25423647]
  23. Radiology. 2019 Feb;290(2):456-464 [PMID: 30398430]
  24. Clin Neurophysiol. 2018 Oct;129(10):2191-2196 [PMID: 30025804]
  25. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  26. Comput Biol Med. 2018 Aug 1;99:24-37 [PMID: 29807250]
  27. Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979 [PMID: 29531073]
  28. Neuroimage. 2018 Apr 15;170:434-445 [PMID: 28223187]
  29. Nat Genet. 2019 Jun;51(6):973-980 [PMID: 31133750]
  30. IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024 [PMID: 25494501]
  31. Front Neuroinform. 2017 Oct 17;11:61 [PMID: 29089883]
  32. Comput Biol Med. 2018 Sep 1;100:270-278 [PMID: 28974302]
  33. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]
  34. Nat Biomed Eng. 2018 Mar;2(3):158-164 [PMID: 31015713]
  35. Brain Struct Funct. 2015 Mar;220(2):841-59 [PMID: 24363140]
  36. Nat Rev Genet. 2012 May 02;13(6):395-405 [PMID: 22549152]
  37. Cortex. 2015 Feb;63:55-67 [PMID: 25243989]
  38. IEEE Trans Biomed Eng. 2018 Sep;65(9):2109-2118 [PMID: 29989952]
  39. Nat Neurosci. 2017 Dec;20(12):1752-1760 [PMID: 29184215]
  40. NPJ Digit Med. 2018 Apr 4;1:9 [PMID: 31304294]
  41. Med Image Anal. 2018 May;46:106-117 [PMID: 29518675]
  42. Ann Oncol. 2018 Aug 1;29(8):1836-1842 [PMID: 29846502]
  43. Neuron. 2002 Jan 31;33(3):341-55 [PMID: 11832223]
  44. Front Neurosci. 2019 Feb 28;13:97 [PMID: 30872986]
  45. Nat Med. 2018 Sep;24(9):1337-1341 [PMID: 30104767]
  46. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Jan 4;64:1-9 [PMID: 26148789]
  47. IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828 [PMID: 23787338]
  48. Nat Med. 2018 Sep;24(9):1342-1350 [PMID: 30104768]
  49. Neuroimage. 2016 Apr 1;129:292-307 [PMID: 26774612]
  50. Curr Opin Neurol. 2001 Dec;14(6):683-8 [PMID: 11723374]
  51. Brain Struct Funct. 2016 Jun;221(5):2569-87 [PMID: 25993900]

Word Cloud

Created with Highcharts 10.0.0learningchallengesDeepmedicalwelladvancesclinicalneurologicdiseasedeepimagediagnosisAlzheimer'smappingdisorderDecipheringmassivevolumecomplexelectronicdatacompiledhospitalsystemspastdecadespotentialrevolutionizemodernmedicinepresentsignificantuniquelysuitedaddressrecenttechniqueshardwarepoisedfieldmachinetransformationalgrowthneurosciencesparticularlypositionedbenefitgivensubtlepresentationsymptomstypicalreviewvariousdomainsalgorithmsalreadyprovidedimpetuschange-areasanalysisimprovedearlydetectionacuteeventssegmentationquantitativeevaluationneuroanatomyvasculatureconnectomeautismspectrumattentiondeficithyperactivityminingmicroscopicelectroencephalogramsignalsgranulargeneticsignaturesadditionallynoteimportantintegrationtoolssettingdiscussbarrierstacklingcurrentlyexistLearningNeurology:SystematicReviewArtificialintelligenceBiomedicalinformaticsComputervisionConnectomeGenomicsMachineNeurologyNeuroscience

Similar Articles

Cited By