Improving Mechanical Ventilator Clinical Decision Support Systems with a Machine Learning Classifier for Determining Ventilator Mode.

Gregory B Rehm, Brooks T Kuhn, Jimmy Nguyen, Nicholas R Anderson, Chen-Nee Chuah, Jason Y Adams
Author Information
  1. Gregory B Rehm: University of California Davis, Davis CA 95616, USA.
  2. Brooks T Kuhn: University of California Davis Medical Center, Sacramento CA 95817, USA.
  3. Jimmy Nguyen: University of California Davis Medical Center, Sacramento CA 95817, USA.
  4. Nicholas R Anderson: University of California Davis Medical Center, Sacramento CA 95817, USA.
  5. Chen-Nee Chuah: University of California Davis, Davis CA 95616, USA.
  6. Jason Y Adams: University of California Davis Medical Center, Sacramento CA 95817, USA.

Abstract

Clinical decision support systems (CDSS) will play increasing role in improving quality of medical care for critically ill patients. However, due to limitations in current informatics infrastructure, CDSS do not always have complete information on state of supporting physiologic monitoring devices, which can limit input data available to CDSS. This is especially true in use case of mechanical ventilation (MV), where current CDSS have no knowledge of critical ventilation settings, such as ventilation mode. To enable MV CDSS make accurate recommendations related to ventilator mode, we developed a highly performant machine learning model that is able to perform per-breath classification of five of most widely used ventilation modes in USA with average F1-score of 97.52%. We also show how our approach makes methodologic improvements over previous work and is highly robust to missing data caused by software/sensor error.

Keywords

MeSH Term

Decision Support Systems, Clinical
Humans
Machine Learning
Monitoring, Physiologic
Respiration, Artificial
Ventilators, Mechanical

Word Cloud

Created with Highcharts 10.0.0CDSSventilationClinicaldecisionsupportsystemscurrentdataMVmodehighlymachinelearningVentilatorwillplayincreasingroleimprovingqualitymedicalcarecriticallyillpatientsHoweverduelimitationsinformaticsinfrastructurealwayscompleteinformationstatesupportingphysiologicmonitoringdevicescanlimitinputavailableespeciallytrueusecasemechanicalknowledgecriticalsettingsenablemakeaccuraterecommendationsrelatedventilatordevelopedperformantmodelableperformper-breathclassificationfivewidelyusedmodesUSAaverageF1-score9752%alsoshowapproachmakesmethodologicimprovementspreviousworkrobustmissingcausedsoftware/sensorerrorImprovingMechanicalDecisionSupportSystemsMachineLearningClassifierDeterminingModeArtificialrespirationclinical

Similar Articles

Cited By