High-Performance Plasma-Enabled Biorefining of Microalgae to Value-Added Products.

Renwu Zhou, Rusen Zhou, Xianhui Zhang, Zhi Fang, Xiaoxiang Wang, Robert Speight, Hongxia Wang, William Doherty, Patrick J Cullen, Kostya Ken Ostrikov, Kateryna Bazaka
Author Information
  1. Renwu Zhou: School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia. ORCID
  2. Rusen Zhou: School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  3. Xianhui Zhang: Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, P.R. China.
  4. Zhi Fang: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 210009, P.R. China.
  5. Xiaoxiang Wang: School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  6. Robert Speight: School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  7. Hongxia Wang: School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  8. William Doherty: Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  9. Patrick J Cullen: School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, Sydney, 2006, Australia.
  10. Kostya Ken Ostrikov: School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  11. Kateryna Bazaka: School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia. ORCID

Abstract

Conversion of renewable biomass by time- and energy-efficient techniques remains an important challenge. Herein, plasma catalytic liquefaction (PCL) is employed to achieve rapid liquefaction of microalgae under mild conditions. The choice of the catalyst affects both the liquefaction efficiency and the yield of products. The acid catalyst is more effective and gave a liquid yield of 73.95 wt % in 3 min, as opposed to 69.80 wt % obtained with the basic catalyst in 7 min. Analyses of the thus-formed products and the processing environment reveal that the enhanced PCL performance is linked to the rapid increase in temperature under the effect of plasma-induced electric fields and the generation of large quantities of reactive species. Moreover, the obtained solid residue can be simply upgraded to a carbon product suitable for supercapacitor applications. Therefore, the proposed strategy may provide a new avenue for fast and comprehensive utilization of biomass under benign conditions.

Keywords

References

  1.  
  2. G. Luderer, Z. Vrontisi, C. Bertram, O. Y. Edelenbosch, R. C. Pietzcker, J. Rogelj, H. S. De Boer, L. Drouet, J. Emmerling, O. Fricko, Nat. Clim. Change 2018, 8, 626;
  3. R. A. Kerr, Science 2007, 316, 188-190.
  4.  
  5. D. V. Chernysheva, Y. A. Chus, V. A. Klushin, T. A. Lastovina, L. S. Pudova, N. V. Smirnova, O. A. Kravchenko, V. M. Chernyshev, V. P. Ananikov, ChemSusChem 2018, 11, 3599-3608;
  6. T. Ennaert, J. Van Aelst, J. Dijkmans, R. De Clercq, W. Schutyser, M. Dusselier, D. Verboekend, B. F. Sels, Chem. Soc. Rev. 2016, 45, 584-611;
  7. M. Y. Lui, B. Chan, A. K. Yuen, A. F. Masters, A. Montoya, T. Maschmeyer, ChemSusChem 2017, 10, 2140-2144.
  8.  
  9. G. Kumar, S. Shobana, W.-H. Chen, Q.-V. Bach, S.-H. Kim, A. Atabani, J.-S. Chang, Green Chem. 2017, 19, 44-67;
  10. A. Sangregorio, N. Guigo, J. C. van der Waal, N. Sbirrazzuoli, ChemSusChem 2018, 11, 4246-4255.
  11.  
  12. A. Lee, D. Lewis, T. Kalaitzidis, P. Ashman, Curr. Opin. Biotechnol. 2016, 38, 85-89;
  13. L. M. Laurens, J. Markham, D. W. Templeton, E. D. Christensen, S. Van Wychen, E. W. Vadelius, M. Chen-Glasser, T. Dong, R. Davis, P. T. Pienkos, Energy Environ. Sci. 2017, 10, 1716-1738.
  14.  
  15. S. Hu, X. Luo, Y. Li, ChemSusChem 2014, 7, 66-72;
  16. H. Huang, X. Yuan, Prog. Energy Combust. Sci. 2015, 49, 59-80;
  17. Y. T. Cheng, J. Jae, J. Shi, W. Fan, G. W. Huber, Angew. Chem. Int. Ed. 2012, 51, 1387-1390;
  18. Angew. Chem. 2012, 124, 1416-1419;
  19. S. Zhu, J. Guo, X. Wang, J. Wang, W. Fan, ChemSusChem 2017, 10, 2547-2559.
  20. P. J. Valdez, M. C. Nelson, J. L. Faeth, H. Y. Wang, X. N. Lin, P. E. Savage, Energy Fuels 2014, 28, 67-75.
  21.  
  22. B. Jin, P. Duan, C. Zhang, Y. Xu, L. Zhang, F. Wang, Chem. Eng. J. 2014, 254, 384-392;
  23. Y. Pierson, X. Chen, F. D. Bobbink, J. Zhang, N. Yan, ACS Sustainable Chem. Eng. 2014, 2, 2081-2089.
  24.  
  25. T. Guo, X. Li, X. Liu, Y. Guo, Y. Wang, ChemSusChem 2018, 11, 2758-2765;
  26. A. Gollakota, N. Kishore, S. Gu, Renewable Sustainable Energy Rev. 2018, 81, 1378-1392.
  27.  
  28. D. Beneroso, T. Monti, E. Kostas, J. Robinson, Chem. Eng. J. 2017, 316, 481-498;
  29. Z. Lu, Z. Wu, L. Fan, H. Zhang, Y. Liao, D. Zheng, S. Wang, Bioresour. Technol. 2016, 199, 423-426;
  30. J. Guo, Y. Zhuang, L. Chen, J. Liu, D. Li, N. Ye, Bioresour. Technol. 2012, 120, 19-25.
  31.  
  32. M. M. Mateus, N. F. Acero, J. C. Bordado, R. G. dos Santos, Ind. Crops Prod. 2015, 74, 9-13;
  33. G. Chatel, K. D. O. Vigier, F. Jerome, ChemSusChem 2014, 7, 2774-2787.
  34.  
  35. B. E. Logan, K. Rabaey, Science 2012, 337, 686-690;
  36. L. Gao, Y. Bao, S. Gan, Z. Sun, Z. Song, D. Han, F. Li, L. Niu, ChemSusChem 2018, 11, 2547-2553.
  37.  
  38. X. Lu, G. Naidis, M. Laroussi, S. Reuter, D. Graves, K. Ostrikov, Phys. Rep. 2016, 630, 1-84;
  39. R. Zhou, R. Zhou, F. Yu, D. Xi, P. Wang, J. Li, X. Wang, X. Zhang, K. Bazaka, K. K. Ostrikov, Chem. Eng. J. 2018, 342, 401-409;
  40. W. Wang, B. Patil, S. Heijkers, V. Hessel, A. Bogaerts, ChemSusChem 2017, 10, 2145-2157;
  41. W. Wang, D. Mei, X. Tu, A. Bogaerts, Chem. Eng. J. 2017, 330, 11-25.
  42.  
  43. R. Zhou, R. Zhou, S. Wang, Z. Lan, X. Zhang, Y. Yin, S. Tu, S. Yang, L. Ye, Bioresour. Technol. 2016, 218, 1275-1278;
  44. Q. Wang, P. Wu, F. Gu, Plasma Sci. Technol. 2013, 15, 654;
  45. D. Xi, C. Jiang, R. Zhou, Z. Fang, X. Zhang, Y. Liu, B. Luan, Z. Feng, G. Chen, Z. Chen, Bioresour. Technol. 2018, 268, 531-538.
  46. E. C. Neyts, K. Ostrikov, M. K. Sunkara, A. Bogaerts, Chem. Rev. 2015, 115, 13408-13446.
  47.  
  48. L. Wang, Y. Yi, C. Wu, H. Guo, X. Tu, Angew. Chem. Int. Ed. 2017, 56, 13679-13683;
  49. Angew. Chem. 2017, 129, 13867-13871;
  50. M. Ramakers, G. Trenchev, S. Heijkers, W. Wang, A. Bogaerts, ChemSusChem 2017, 10, 2642-2652.
  51.  
  52. R. Ravindran, C. Sarangapani, S. Jaiswal, P. Cullen, A. K. Jaiswal, Bioresour. Technol. 2017, 243, 327-334;
  53. J. Vanneste, T. Ennaert, A. Vanhulsel, B. Sels, ChemSusChem 2017, 10, 14-31.
  54.  
  55. H. Taghvaei, M. Kheirollahivash, M. Ghasemi, P. Rostami, B. C. Gates, M. R. Rahimpour, Energy Fuels 2014, 28, 4545-4553;
  56. H. Taghvaei, M. B. Hosseinzadeh, S. Rezazadeh, M. R. Rahimpour, A. Shariati, Chem. Eng. J. 2015, 281, 227-235.
  57.  
  58. C. Du, J. Wu, D. Ma, Y. Liu, P. Qiu, R. Qiu, S. Liao, D. Gao, Int. J. Hydrogen Energy 2015, 40, 12634-12649;
  59. W. K. Tu, J. L. Shie, C. Y. Chang, C. F. Chang, C. F. Lin, S. Y. Yang, J. T. Kuo, D. G. Shaw, Y. D. You, D. J. Lee, Bioresour. Technol. 2009, 100, 2052-2061.
  60. P. Vanraes, A. Bogaerts, Appl. Phys. Rev. 2018, 5, 031103.
  61.  
  62. Y. Zan, Y. Sun, L. Kong, G. Miao, L. Bao, H. Wang, S. Li, Y. Sun, ChemSusChem 2018, 11, 2492-2496;
  63. G. Yu, Y. Zhang, L. Schideman, T. Funk, Z. Wang, Energy Environ. Sci. 2011, 4, 4587-4595;
  64. S. Zou, Y. Wu, M. Yang, C. Li, J. Tong, Energy Environ. Sci. 2010, 3, 1073-1078.
  65. L. G. Alba, M. P. Vos, C. Torri, D. Fabbri, S. R. A. Kersten, D. W. F. Brilman, ChemSusChem 2013, 6, 1330-1333.
  66. Y. Chen, Y. Wu, R. Ding, P. Zhang, J. Liu, M. Yang, P. Zhang, AIChE J. 2015, 61, 1118-1128.
  67.  
  68. D. A. Cantero, Á. S. Tapia, M. D. Bermejo, M. J. Cocero, Chem. Eng. J. 2015, 276, 145-154;
  69. A. Kruse, A. Gawlik, Ind. Eng. Chem. Res. 2003, 42, 267-279;
  70. P. Duan, B. Jin, Y. Xu, Y. Yang, X. Bai, F. Wang, L. Zhang, J. Miao, Bioresour. Technol. 2013, 133, 197-205;
  71. C. Zhang, X. Tang, L. Sheng, X. Yang, Green Chem. 2016, 18, 2542-2553.
  72.  
  73. P. Gupta, G. Tenhundfeld, E. O. Daigle, D. Ryabkov, Surf. Coat. Technol. 2007, 201, 8746-8760;
  74. Y. Tu, Y. Xian, Y. Yang, X. Lu, Y. Pan, Plasma Processes Polym. 2017, 14, 1600259.
  75.  
  76. R. Zhou, R. Zhou, K. Prasad, Z. Fang, R. Speight, K. Bazaka, K. Ostrikov, Green Chem. 2018, 20, 5276-5284;
  77. H. Uchiyama, K. Ishikawa, Q. L. Zhao, G. Andocs, N. Nojima, K. Takeda, M. C. Krishna, T. Ishijima, Y. Matsuya, M. Hori, K. Noguchi, T. Kondo, J. Phys. D 2018, 51, 095202.
  78.  
  79. I. B. Denysenko, S. Xu, J. D. Long, P. P. Rutkevych, N. A. Azarenkov, K. Ostrikov, J. Appl. Phys. 2004, 95, 2713-2724;
  80. D. Levko, A. Sharma, L. L. Raja, J. Phys. D 2017, 50, 085202.
  81. I. Levchenko, K. Bazaka, O. Baranov, R. M. Sankaran, A. Nomine, T. Belmonte, S. Xu, Appl. Phys. Rev. 2018, 5, 021103.
  82. R. Zhou, R. Zhou, P. Wang, B. Luan, X. Zhang, Z. Fang, Y. Xian, X. Lu, K. K. Ostrikov, K. Bazaka, ACS Appl. Mater. Interfaces 2019, 11, 20660-20669.
  83. B. Zhang, Q. Lin, Q. Zhang, K. Wu, W. Pu, M. Yang, Y. Wu, RSC Adv. 2017, 7, 8944-8951.
  84.  
  85. R. K. Gupta, M. Dubey, P. Kharel, Z. Gu, Q. H. Fan, J. Power Sources 2015, 274, 1300-1305;
  86. O. Kazak, Y. R. Eker, H. Bingol, A. Tor, Chem. Eng. J. 2017, 325, 564-575.
  87.  
  88. R. Thangavel, K. Kaliyappan, H. V. Ramasamy, X. Sun, Y.-S. Lee, ChemSusChem 2017, 10, 2805-2815;
  89. Z. Wang, A. T. Smith, W. Wang, L. Sun, Angew. Chem. Int. Ed. 2018, 57, 13722-13734;
  90. Angew. Chem. 2018, 130, 13914-13927;
  91. D. Yu, C. Chen, G. Zhao, L. Sun, B. Du, H. Zhang, Z. Li, Y. Sun, F. Besenbacher, M. Yu, ChemSusChem 2018, 11, 1678-1685.
  92. A. Wang, T. Zhang, Acc. Chem. Res. 2013, 46, 1377-1386.

Word Cloud

Created with Highcharts 10.0.0liquefactionbiomasscatalystplasmaPCLrapidmicroalgaeconditionsyieldproductsobtainedConversionrenewabletime-energy-efficienttechniquesremainsimportantchallengeHereincatalyticemployedachievemildchoiceaffectsefficiencyacideffectivegaveliquid7395 wt %3 minopposed6980 wt %basic7 minAnalysesthus-formedprocessingenvironmentrevealenhancedperformancelinkedincreasetemperatureeffectplasma-inducedelectricfieldsgenerationlargequantitiesreactivespeciesMoreoversolidresiduecansimplyupgradedcarbonproductsuitablesupercapacitorapplicationsThereforeproposedstrategymayprovidenewavenuefastcomprehensiveutilizationbenignHigh-PerformancePlasma-EnabledBiorefiningMicroalgaeValue-AddedProductsbiorefiningchemistry

Similar Articles

Cited By