TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration.

Ju Gao, Luwen Wang, Tingxiang Yan, George Perry, Xinglong Wang
Author Information
  1. Ju Gao: Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
  2. Luwen Wang: Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
  3. Tingxiang Yan: Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
  4. George Perry: College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
  5. Xinglong Wang: Department of Pathology, Case Western Reserve University, Cleveland, OH, USA. Electronic address: xinglong.wang@case.edu.

Abstract

Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Importantly, TDP-43 proteinopathy, characterized by aberrant phosphorylation, ubiquitination, cleavage or nuclear depletion of TDP-43 in neurons and glial cells, is a common prominent pathological feature of various major neurodegenerative diseases including ALS, FTD, and Alzheimer's disease (AD). Although the pathomechanisms underlying TDP-43 proteinopathy remain elusive, pathologically relevant TDP-43 has been repeatedly shown to be present in either the inside or outside of mitochondria, and functionally involved in the regulation of mitochondrial morphology, trafficking, and function, suggesting mitochondria as likely targets of TDP-43 proteinopathy. In this review, we first describe the current knowledge of the association of TDP-43 with mitochondria. We then review in detail multiple mitochondrial pathways perturbed by pathological TDP-43, including mitochondrial fission and fusion dynamics, mitochondrial trafficking, bioenergetics, and mitochondrial quality control. Lastly, we briefly discuss how the study of TDP-43 proteinopathy and mitochondrial abnormalities may provide new avenues for neurodegeneration therapeutics.

Keywords

References

  1. Nat Commun. 2014 Jun 03;5:3996 [PMID: 24893131]
  2. J Biol Chem. 2011 Dec 30;286(52):44441-8 [PMID: 22052911]
  3. J Biol Chem. 2009 Mar 20;284(12):8083-92 [PMID: 19112176]
  4. Structure. 2016 Sep 6;24(9):1537-49 [PMID: 27545621]
  5. J Neural Transm (Vienna). 1998;105(8-9):855-70 [PMID: 9869323]
  6. Nat Rev Neurol. 2015 Jan;11(1):11-24 [PMID: 25486875]
  7. Brain. 2016 Nov 1;139(11):2983-2993 [PMID: 27694152]
  8. Curr Alzheimer Res. 2011 Aug;8(5):563-72 [PMID: 21244356]
  9. Ann Neurol. 1999 Oct;46(4):656-60 [PMID: 10514105]
  10. Arch Neurol. 2009 Feb;66(2):180-9 [PMID: 19204154]
  11. Brain. 2017 Dec 1;140(12):3233-3251 [PMID: 29077793]
  12. Ann Neurol. 1998 Nov;44(5):819-24 [PMID: 9818940]
  13. PLoS One. 2011 Mar 11;6(3):e17808 [PMID: 21412434]
  14. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5710-4 [PMID: 8202552]
  15. J Neurosci. 2014 Nov 26;34(48):15962-74 [PMID: 25429138]
  16. Nat Rev Mol Cell Biol. 2011 Jan;12(1):9-14 [PMID: 21179058]
  17. Mol Neurobiol. 2018 Apr;55(4):3143-3151 [PMID: 28466273]
  18. Cell Death Dis. 2018 Sep 20;9(10):953 [PMID: 30237395]
  19. J Mol Biol. 2019 May 3;431(10):2050-2059 [PMID: 30905713]
  20. Mol Cell Neurosci. 2007 Jun;35(2):320-7 [PMID: 17481916]
  21. Neurobiol Dis. 2018 Nov;119:159-171 [PMID: 30092269]
  22. Nat Neurosci. 2019 Feb;22(2):180-190 [PMID: 30643298]
  23. J Biol Chem. 2011 May 27;286(21):18845-55 [PMID: 21454607]
  24. J Cell Biol. 1999 Nov 15;147(4):699-706 [PMID: 10562274]
  25. BMC Med Genomics. 2017 May 26;10(1):38 [PMID: 28549443]
  26. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2653-8 [PMID: 16477035]
  27. Biochem Biophys Res Commun. 2006 Dec 22;351(3):602-11 [PMID: 17084815]
  28. J Biol Chem. 2011 Jun 3;286(22):19958-72 [PMID: 21471218]
  29. Neuron. 2014 Feb 5;81(3):536-543 [PMID: 24507191]
  30. Ann Neurol. 2004 Feb;55(2):221-35 [PMID: 14755726]
  31. Acta Neuropathol. 2000 Aug;100(2):138-44 [PMID: 10963360]
  32. Nat Genet. 2008 May;40(5):572-4 [PMID: 18372902]
  33. J Neuropathol Exp Neurol. 2008 Jun;67(6):555-64 [PMID: 18520774]
  34. Brain Res Bull. 2012 Dec 1;89(5-6):185-90 [PMID: 22986236]
  35. Mol Neurodegener. 2017 Feb 2;12(1):13 [PMID: 28153034]
  36. Nat Commun. 2017 Jun 06;8:15558 [PMID: 28585542]
  37. J Biol Chem. 2001 Sep 28;276(39):36337-43 [PMID: 11470789]
  38. PLoS Genet. 2019 May 17;15(5):e1007947 [PMID: 31100073]
  39. Hum Mol Genet. 2009 Oct 15;18(R2):R169-76 [PMID: 19808793]
  40. Nat Commun. 2015 Jan 29;6:6183 [PMID: 25630387]
  41. Neuron. 2015 Jan 21;85(2):257-73 [PMID: 25611507]
  42. Mol Biol Cell. 1997 Jul;8(7):1233-42 [PMID: 9243504]
  43. PLoS One. 2018 May 22;13(5):e0196528 [PMID: 29787572]
  44. J Alzheimers Dis. 2018;66(3):1001-1014 [PMID: 30372676]
  45. Neurology. 1990 Aug;40(8):1302-3 [PMID: 2166249]
  46. Science. 2008 Mar 21;319(5870):1668-72 [PMID: 18309045]
  47. J Neurochem. 2014 Apr;129(2):350-61 [PMID: 24298989]
  48. J Proteome Res. 2010 Feb 5;9(2):1104-20 [PMID: 20020773]
  49. Front Biosci. 2008 Jan 01;13:867-78 [PMID: 17981595]
  50. Nat Neurosci. 2011 Apr;14(4):452-8 [PMID: 21358640]
  51. J Neurosci. 2009 Jul 15;29(28):9090-103 [PMID: 19605646]
  52. Cell Death Dis. 2018 Mar 16;9(4):413 [PMID: 29549303]
  53. Nat Neurosci. 2011 Apr;14(4):459-68 [PMID: 21358643]
  54. Acta Neuropathol. 2007 Dec;114(6):633-9 [PMID: 17929040]
  55. Cell Mol Life Sci. 2015 Nov;72(21):4205-20 [PMID: 26043972]
  56. Neurobiol Dis. 2018 Jul;115:167-181 [PMID: 29630989]
  57. Cell Metab. 2018 Sep 4;28(3):400-414.e8 [PMID: 30017354]
  58. Neurosci Lett. 2012 Nov 21;530(2):144-9 [PMID: 23063673]
  59. Ann Neurol. 1997 Oct;42(4):644-54 [PMID: 9382477]
  60. J Neurochem. 2009 Nov;111(4):1051-61 [PMID: 19765185]
  61. Hum Mol Genet. 2009 Oct 15;18(R2):R156-62 [PMID: 19808791]
  62. Mol Cell. 2004 Oct 8;16(1):59-68 [PMID: 15469822]
  63. Nat Rev Mol Cell Biol. 2007 Nov;8(11):870-9 [PMID: 17928812]
  64. Mol Biol Cell. 2013 Mar;24(5):659-67 [PMID: 23283981]
  65. Nat Rev Neurosci. 2011 Nov 30;13(1):38-50 [PMID: 22127299]
  66. Cell. 2015 Sep 24;163(1):123-33 [PMID: 26406374]
  67. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3347-52 [PMID: 22323604]
  68. Nat Commun. 2017 Dec 12;8(1):2092 [PMID: 29233983]
  69. Mol Neurodegener. 2017 May 8;12(1):37 [PMID: 28482850]
  70. Hum Mol Genet. 2014 Sep 15;23(18):4960-9 [PMID: 24847002]
  71. Hum Mol Genet. 2013 Dec 1;22(23):4706-19 [PMID: 23827948]
  72. Sci Rep. 2018 May 4;8(1):7083 [PMID: 29728608]
  73. Neurosci Lett. 2018 Jun 21;678:8-15 [PMID: 29715546]
  74. Hum Mol Genet. 2011 Apr 1;20(7):1400-10 [PMID: 21257637]
  75. J Biol Chem. 2017 Jun 23;292(25):10600-10612 [PMID: 28487370]
  76. Mol Ther. 2017 Jan 4;25(1):127-139 [PMID: 28129109]
  77. Nature. 2017 Mar 16;543(7645):443-446 [PMID: 28241148]
  78. Science. 2015 Aug 7;349(6248):650-5 [PMID: 26250685]
  79. Hum Mol Genet. 2014 Mar 15;23(6):1413-24 [PMID: 24154542]
  80. Nat Cell Biol. 1999 Sep;1(5):298-304 [PMID: 10559943]
  81. Cell Res. 2018 Mar;28(3):296-306 [PMID: 29451229]
  82. Hum Mol Genet. 2016 Jun 15;25(12):2378-2392 [PMID: 27056981]
  83. Hum Mol Genet. 2010 Apr 15;19(R1):R46-64 [PMID: 20400460]
  84. Nature. 2006 Oct 19;443(7113):787-95 [PMID: 17051205]
  85. J Biol Chem. 2014 May 16;289(20):14263-71 [PMID: 24719334]
  86. PLoS One. 2010 Oct 11;5(10):e13250 [PMID: 20948999]
  87. J Biol Chem. 2010 Apr 9;285(15):11068-72 [PMID: 20154090]
  88. Acta Neuropathol Commun. 2016 May 05;4(1):47 [PMID: 27151080]
  89. Acta Neuropathol. 2019 Jan;137(1):47-69 [PMID: 30450515]
  90. J Biol Chem. 2018 Apr 20;293(16):6090-6098 [PMID: 29511089]
  91. J Neuropathol Exp Neurol. 1997 Aug;56(8):901-11 [PMID: 9258260]
  92. Sci Rep. 2017 Aug 9;7(1):7709 [PMID: 28794432]
  93. EMBO Mol Med. 2018 Mar;10(3): [PMID: 29335339]
  94. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19318-23 [PMID: 19050078]
  95. J Cell Sci. 2007 Mar 1;120(Pt 5):838-48 [PMID: 17298981]
  96. Nat Neurosci. 2012 Nov;15(11):1488-97 [PMID: 23023293]
  97. J Biol Chem. 2004 May 21;279(21):22704-14 [PMID: 15024001]
  98. Biochemistry. 2018 Dec 18;57(50):6822-6826 [PMID: 30520303]
  99. Nucleic Acids Res. 2017 Jun 2;45(10):6177-6193 [PMID: 28335005]
  100. Amyotroph Lateral Scler Frontotemporal Degener. 2018 Aug;19(5-6):446-456 [PMID: 29382228]
  101. Nat Neurosci. 2019 Feb;22(2):167-179 [PMID: 30643292]
  102. Nat Rev Neurosci. 2012 Jan 05;13(2):77-93 [PMID: 22218207]
  103. EMBO J. 2016 Nov 2;35(21):2350-2370 [PMID: 27621269]
  104. J Neurochem. 2018 Sep;146(5):585-597 [PMID: 29779213]
  105. Lancet Neurol. 2008 May;7(5):409-16 [PMID: 18396105]
  106. FEBS J. 2010 May;277(10):2268-81 [PMID: 20423455]
  107. Ann Neurol. 2007 May;61(5):427-34 [PMID: 17469116]
  108. EMBO J. 2018 Mar 1;37(5): [PMID: 29438978]
  109. Nat Med. 2016 Aug;22(8):869-78 [PMID: 27348499]
  110. J Biol Chem. 2013 Feb 8;288(6):4103-15 [PMID: 23258539]
  111. PLoS One. 2013 Nov 29;8(11):e81170 [PMID: 24312274]
  112. Dis Model Mech. 2018 Mar 26;11(3): [PMID: 29419416]
  113. J Biol Chem. 2008 May 9;283(19):13302-9 [PMID: 18305110]
  114. PLoS Genet. 2008 Sep 19;4(9):e1000193 [PMID: 18802454]
  115. Biochemistry. 2019 Feb 12;58(6):590-607 [PMID: 30489059]
  116. Mol Cell Biol. 2011 Mar;31(5):1098-108 [PMID: 21173160]
  117. J Biol Chem. 2002 Aug 16;277(33):29626-33 [PMID: 12050154]
  118. Science. 2006 Oct 6;314(5796):130-3 [PMID: 17023659]
  119. Nucleic Acids Res. 2009 Apr;37(6):1799-808 [PMID: 19174564]
  120. Nat Rev Mol Cell Biol. 2015 Jun;16(6):345-59 [PMID: 25970558]
  121. EMBO J. 2016 Jan 18;35(2):121-42 [PMID: 26702100]
  122. J Neurosci. 2010 Aug 11;30(32):10851-9 [PMID: 20702714]
  123. Mol Cell. 2018 Sep 6;71(5):703-717.e9 [PMID: 30100264]
  124. Cell. 2013 Sep 26;155(1):160-71 [PMID: 24055366]

Grants

  1. R01 AG056320/NIA NIH HHS
  2. R01 NS089604/NINDS NIH HHS
  3. RF1 AG056320/NIA NIH HHS

MeSH Term

Animals
DNA-Binding Proteins
Humans
Mitochondria
Mitochondrial Turnover
Neurons
TDP-43 Proteinopathies

Chemicals

DNA-Binding Proteins
TARDBP protein, human

Word Cloud

Created with Highcharts 10.0.0TDP-43mitochondrialproteinopathymitochondrialateralsclerosisALSdementiaFTDpathologicaldiseasesincludingAlzheimer'sdiseasetraffickingreviewabnormalitiesneurodegenerationGeneticmutationsTARDNA-bindingprotein43causeamyotrophicfrontotemporalImportantlycharacterizedaberrantphosphorylationubiquitinationcleavagenucleardepletionneuronsglialcellscommonprominentfeaturevariousmajorneurodegenerativeADAlthoughpathomechanismsunderlyingremainelusivepathologicallyrelevantrepeatedlyshownpresenteitherinsideoutsidefunctionallyinvolvedregulationmorphologyfunctionsuggestinglikelytargetsfirstdescribecurrentknowledgeassociationdetailmultiplepathwaysperturbedfissionfusiondynamicsbioenergeticsqualitycontrolLastlybrieflydiscussstudymayprovidenewavenuestherapeuticsAmyotrophicFrontotemporalMitochondriaNeurodegenerationNeurodegenerative

Similar Articles

Cited By (47)