Noble Metal Particles Confined in Zeolites: Synthesis, Characterization, and Applications.

Yuchao Chai, Weixiang Shang, Weijie Li, Guangjun Wu, Weili Dai, Naijia Guan, Landong Li
Author Information
  1. Yuchao Chai: School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China.
  2. Weixiang Shang: School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China.
  3. Weijie Li: School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China.
  4. Guangjun Wu: School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China.
  5. Weili Dai: School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China.
  6. Naijia Guan: School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China.
  7. Landong Li: School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China. ORCID

Abstract

Noble metal nanoparticles or subnanometric particles confined in zeolites, that is, metal@zeolite, represent an important type of functional materials with typical core-shell structure. This type of material is known for decades and recently became a research hotspot due to their emerging applications in various fields. Remarkable achievements are made dealing with the synthesis, characterization, and applications of noble metal particles confined in zeolites. Here, the most representative research progress in metal@zeolites is briefly reviewed, aiming to boost further research on this topic. For the synthesis of metal@zeolites, various strategies, such as direct synthesis from inorganic or ligand-assisted noble metal precursors, multistep postsynthesis encapsulation and ion-exchange followed by reduction, are introduced and compared. For the characterization of metal@zeolites, several most useful techniques, such as electron microscopy, X-ray based spectroscopy, infrared and fluorescence emission spectroscopy, are recommended to check the successful confinement of noble metal particles in zeolite matrix and their unique physiochemical properties. For the applications of metal@zeolites, catalysis and optics are involved with an emphasis on catalytic applications including the size-dependent catalytic properties, the sintering-resistance properties, the substrate shape-selective catalysis, and catalysis modulation by zeolite microenvironment.

Keywords

References

  1. Angew Chem Int Ed Engl. 2014 Aug 18;53(34):8904-7 [PMID: 24986134]
  2. Angew Chem Int Ed Engl. 2007;46(20):3697-700 [PMID: 17410631]
  3. Science. 2017 Sep 1;357(6354):898-903 [PMID: 28818971]
  4. J Am Chem Soc. 2008 Apr 16;130(15):5038-9 [PMID: 18345630]
  5. Chem Commun (Camb). 2011 Sep 21;47(35):9789-91 [PMID: 21625721]
  6. Angew Chem Int Ed Engl. 2018 May 28;57(22):6454-6458 [PMID: 29575492]
  7. Nat Chem. 2013 Sep;5(9):775-81 [PMID: 23965680]
  8. Adv Mater. 2015 Mar 18;27(11):1919-23 [PMID: 25645289]
  9. Nat Mater. 2016 Sep;15(9):1017-22 [PMID: 27270964]
  10. Chem Rev. 2013 Mar 13;113(3):1736-850 [PMID: 23444971]
  11. Chem Rev. 2014 May 14;114(9):4807-37 [PMID: 24555638]
  12. J Am Chem Soc. 2011 Dec 28;133(51):20672-5 [PMID: 22087502]
  13. Chem Commun (Camb). 2014 Feb 21;50(15):1824-6 [PMID: 24398573]
  14. Nat Commun. 2017 Aug 24;8(1):340 [PMID: 28835704]
  15. Chem Soc Rev. 2016 Sep 21;45(18):4953-94 [PMID: 27200435]
  16. Science. 2001 Jan 5;291(5501):103-6 [PMID: 11141556]
  17. J Am Chem Soc. 2011 Aug 17;133(32):12787-94 [PMID: 21749155]
  18. J Phys Chem Lett. 2016 Jul 7;7(13):2537-43 [PMID: 27315020]
  19. Science. 2018 Aug 17;361(6403):686-690 [PMID: 30115807]
  20. Chem Rev. 2003 Mar;103(3):663-702 [PMID: 12630849]
  21. Nat Commun. 2018 Jun 29;9(1):2545 [PMID: 29959324]
  22. Front Chem. 2018 Nov 09;6:550 [PMID: 30474024]
  23. Nature. 2008 Feb 7;451(7179):671-8 [PMID: 18256663]
  24. Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7656-73 [PMID: 22639064]
  25. Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9178-82 [PMID: 27346582]
  26. Chem Soc Rev. 2008 Sep;37(9):2096-126 [PMID: 18762848]
  27. Nat Mater. 2013 Jan;12(1):34-9 [PMID: 23142841]
  28. Adv Mater. 2018 Jun;30(26):e1707189 [PMID: 29658155]
  29. J Nanosci Nanotechnol. 2009 May;9(5):3134-7 [PMID: 19452980]
  30. Chem Soc Rev. 2008 Oct;37(10):2155-62 [PMID: 18818818]
  31. Chem Commun (Camb). 2015 Apr 7;51(27):5936-8 [PMID: 25738186]
  32. Science. 2012 Mar 9;335(6073):1205-8 [PMID: 22403386]
  33. Adv Mater. 2019 Jan;31(1):e1803966 [PMID: 30276888]
  34. Nat Chem. 2009 Apr;1(1):37-46 [PMID: 21378799]
  35. Acc Chem Res. 2017 Apr 18;50(4):787-795 [PMID: 28207240]
  36. Chem Soc Rev. 2010 Dec;39(12):4754-66 [PMID: 20981379]
  37. Angew Chem Int Ed Engl. 2007;46(12):2028-30 [PMID: 17285671]
  38. Acc Chem Res. 2013 Aug 20;46(8):1720-30 [PMID: 23634641]
  39. Angew Chem Int Ed Engl. 2010 May 3;49(20):3504-7 [PMID: 20391442]
  40. ChemSusChem. 2015 Sep 7;8(17):2867-71 [PMID: 26043428]
  41. J Microsc. 2006 Oct;224(Pt 1):58-61 [PMID: 17100907]
  42. Chem Mater. 2018 May 22;30(10):3177-3198 [PMID: 29861546]
  43. J Am Chem Soc. 2017 Aug 9;139(31):10588-10596 [PMID: 28657741]
  44. Chemphyschem. 2010 Jun 7;11(8):1627-31 [PMID: 20349496]
  45. Chem Soc Rev. 2015 Oct 21;44(20):7044-111 [PMID: 25976164]
  46. Chem Commun (Camb). 2013 Oct 4;49(76):8507-9 [PMID: 23942629]
  47. Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11230-3 [PMID: 21956896]
  48. Chem Rev. 2015 Jul 22;115(14):6687-718 [PMID: 26088402]
  49. Angew Chem Int Ed Engl. 2013 Dec 23;52(52):13880-9 [PMID: 24115577]
  50. J Am Chem Soc. 2003 Feb 26;125(8):2195-9 [PMID: 12590547]
  51. Nat Mater. 2017 Jan;16(1):132-138 [PMID: 27669051]
  52. J Am Chem Soc. 2010 Jun 16;132(23):7968-75 [PMID: 20481529]
  53. Adv Sci (Weinh). 2019 Jul 18;6(16):1900299 [PMID: 31453060]
  54. J Am Chem Soc. 2016 Dec 7;138(48):15743-15750 [PMID: 27934002]
  55. J Am Chem Soc. 2014 Oct 29;136(43):15280-90 [PMID: 25314634]
  56. Chem Soc Rev. 2015 Oct 21;44(20):7022-4 [PMID: 26401967]
  57. J Am Chem Soc. 2016 Jun 22;138(24):7484-7 [PMID: 27248462]
  58. J Am Chem Soc. 2009 Mar 4;131(8):3049-56 [PMID: 19209854]
  59. Chem Soc Rev. 2016 Feb 7;45(3):584-611 [PMID: 26691750]
  60. Phys Chem Chem Phys. 2010 Jun 7;12(21):5503-13 [PMID: 20445945]
  61. Chemistry. 2013 Oct 11;19(42):14215-23 [PMID: 23999985]
  62. ChemSusChem. 2009;2(1):18-45 [PMID: 19142903]
  63. Chem Rev. 2009 May;109(5):1613-29 [PMID: 19301813]
  64. Adv Mater. 2010 Mar 5;22(9):957-60 [PMID: 20217819]
  65. Nat Mater. 2009 Feb;8(2):126-31 [PMID: 19029893]
  66. Chem Rev. 2014 Jan 22;114(2):1521-43 [PMID: 24187944]
  67. Chem Rev. 2018 May 23;118(10):4981-5079 [PMID: 29658707]
  68. Chem Soc Rev. 2003 Jan;32(1):29-37 [PMID: 12596543]
  69. Chem Commun (Camb). 2010 Sep 7;46(33):5997-6015 [PMID: 20661500]
  70. J Am Chem Soc. 2016 Jun 29;138(25):7880-3 [PMID: 27308846]
  71. J Am Chem Soc. 2010 Jul 7;132(26):9129-37 [PMID: 20536236]
  72. J Am Chem Soc. 2012 Oct 24;134(42):17688-95 [PMID: 23016946]
  73. Nat Commun. 2018 Feb 8;9(1):574 [PMID: 29422522]
  74. Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9747-9751 [PMID: 28503914]

Word Cloud

Created with Highcharts 10.0.0metalapplicationsmetal@zeolitescatalysisNobleparticleszeolitesresearchsynthesisnoblepropertiesnanoparticlesconfinedtypevariouscharacterizationspectroscopyzeoliteopticscatalyticsubnanometricmetal@zeoliterepresentimportantfunctionalmaterialstypicalcore-shellstructurematerialknowndecadesrecentlybecamehotspotdueemergingfieldsRemarkableachievementsmadedealingrepresentativeprogressbrieflyreviewedaimingboosttopicstrategiesdirectinorganicligand-assistedprecursorsmultisteppostsynthesisencapsulationion-exchangefollowedreductionintroducedcomparedseveralusefultechniqueselectronmicroscopyX-raybasedinfraredfluorescenceemissionrecommendedchecksuccessfulconfinementmatrixuniquephysiochemicalinvolvedemphasisincludingsize-dependentsintering-resistancesubstrateshape-selectivemodulationmicroenvironmentMetalParticlesConfinedZeolites:SynthesisCharacterizationApplicationsmetals

Similar Articles

Cited By