Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions.

Ketan D Patel, Felipe B d'Andrea, Nicole M Gaudelli, Andrew R Buller, Craig A Townsend, Andrew M Gulick
Author Information
  1. Ketan D Patel: Department of Structural Biology, The Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA. ORCID
  2. Felipe B d'Andrea: Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
  3. Nicole M Gaudelli: Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
  4. Andrew R Buller: Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
  5. Craig A Townsend: Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA. ctownsend@jhu.edu. ORCID
  6. Andrew M Gulick: Department of Structural Biology, The Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203, USA. amgulick@buffalo.edu. ORCID

Abstract

Nonribosomal peptide synthetases (NRPSs) underlie the biosynthesis of many natural products that have important medicinal utility. Protection of the NRPS peptide products from proteolysis is critical to these pathways and is often achieved by structural modification, principally the introduction of D-amino acid residues into the elongating peptide. These amino acids are generally formed in situ from their L-stereoisomers by epimerization domains or dual-function condensation/epimerization domains. In singular contrast, the thioesterase domain of nocardicin biosynthesis mediates both the effectively complete L- to D-epimerization of its C-terminal amino acid residue (≥100:1) and hydrolytic product release. We report herein high-resolution crystal structures of the nocardicin thioesterase domain in ligand-free form and reacted with a structurally precise fluorophosphonate substrate mimic that identify the complete peptide binding pocket to accommodate both stereoisomers. These structures combined with additional functional studies provide detailed mechanistic insight into this unique dual-function NRPS domain.

References

  1. Nucleic Acids Res. 2016 Jul 8;44(W1):W351-5 [PMID: 27131377]
  2. Structure. 2002 Mar;10(3):301-10 [PMID: 12005429]
  3. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18584-9 [PMID: 16339304]
  4. Gene. 1989 Apr 15;77(1):51-9 [PMID: 2744487]
  5. J Med Chem. 1994 Jan 21;37(2):226-31 [PMID: 8295209]
  6. Curr Opin Chem Biol. 2016 Dec;35:89-96 [PMID: 27676239]
  7. Proc Natl Acad Sci U S A. 1979 Jan;76(1):96-100 [PMID: 106392]
  8. Biochemistry. 1991 Jan 15;30(2):485-93 [PMID: 1988040]
  9. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):30-42 [PMID: 15299723]
  10. Curr Opin Chem Biol. 2017 Jun;38:36-44 [PMID: 28260651]
  11. Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11584-11588 [PMID: 30035356]
  12. Angew Chem Int Ed Engl. 2019 Feb 18;58(8):2246-2250 [PMID: 30521081]
  13. ACS Chem Biol. 2016 Aug 19;11(8):2293-303 [PMID: 27294598]
  14. Science. 2008 Aug 1;321(5889):659-63 [PMID: 18583577]
  15. J Am Chem Soc. 2013 Feb 6;135(5):1749-59 [PMID: 23330869]
  16. Front Microbiol. 2018 Feb 06;9:156 [PMID: 29467749]
  17. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 [PMID: 21460441]
  18. Curr Opin Chem Biol. 2016 Dec;35:97-108 [PMID: 27693891]
  19. Cell Chem Biol. 2019 Jun 20;26(6):878-884.e8 [PMID: 30982751]
  20. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6246-51 [PMID: 20332208]
  21. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67 [PMID: 21460454]
  22. J Biol Chem. 2016 Oct 21;291(43):22559-22571 [PMID: 27597544]
  23. J Fluor Chem. 2008 Sep;129(9):731-742 [PMID: 19727327]
  24. Nat Chem Biol. 2018 Jan;14(1):5-7 [PMID: 29155429]
  25. Methods Enzymol. 1997;276:307-26 [PMID: 27754618]
  26. Elife. 2017 Mar 15;6: [PMID: 28431213]
  27. Nature. 2019 Jan;565(7737):112-117 [PMID: 30542153]
  28. Biochemistry. 2009 Sep 15;48(36):8746-57 [PMID: 19663400]
  29. Chem Biol. 2015 Oct 22;22(10):1325-34 [PMID: 26496685]
  30. Nat Commun. 2017 Jun 26;8:15935 [PMID: 28649989]
  31. ACS Chem Biol. 2013 Oct 18;8(10):2192-200 [PMID: 23883096]
  32. Angew Chem Int Ed Engl. 2014 Aug 4;53(32):8503-7 [PMID: 24943072]
  33. Chem Rev. 2002 Dec;102(12):4639-750 [PMID: 12475205]
  34. Nat Prod Rep. 2014 Jan;31(1):61-108 [PMID: 24292120]
  35. J Org Chem. 2013 Jul 5;78(13):6412-26 [PMID: 23758494]
  36. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  37. Nat Prod Rep. 2016 Feb;33(2):183-202 [PMID: 25642666]
  38. Chem Biol. 2011 Nov 23;18(11):1482-8 [PMID: 22118682]
  39. Nat Chem Biol. 2017 Jul;13(7):737-744 [PMID: 28504677]
  40. Nat Chem Biol. 2012 Sep;8(9):791-7 [PMID: 22820420]
  41. Nature. 2015 Apr 16;520(7547):383-7 [PMID: 25624104]
  42. Nat Chem Biol. 2014 Apr;10(4):251-8 [PMID: 24531841]
  43. J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):493-513 [PMID: 30673909]
  44. J Biol Chem. 2009 Feb 20;284(8):5021-9 [PMID: 19103602]
  45. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  46. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):331-7 [PMID: 21460451]
  47. Annu Rev Biochem. 1990;59:597-630 [PMID: 2197984]
  48. Cell Chem Biol. 2016 May 19;23(5):587-597 [PMID: 27133313]
  49. Angew Chem Int Ed Engl. 2017 Mar 27;56(14):3770-3821 [PMID: 28323366]
  50. Nat Chem Biol. 2006 Oct;2(10):531-6 [PMID: 16969373]
  51. Nat Prod Rep. 2018 Nov 14;35(11):1156-1184 [PMID: 30046790]
  52. Biochemistry. 2018 Jun 19;57(24):3353-3358 [PMID: 29701951]

Grants

  1. R01 AI121072/NIAID NIH HHS
  2. R01 GM116957/NIGMS NIH HHS
  3. R37 AI014937/NIAID NIH HHS

MeSH Term

Amino Acid Isomerases
Bacterial Proteins
Crystallography, X-Ray
Hydrolases
Lactams
Models, Molecular
Nocardia
Organophosphonates
Peptide Synthases
Peptides
Protein Structure, Secondary
Stereoisomerism
Substrate Specificity

Chemicals

Bacterial Proteins
Lactams
Organophosphonates
Peptides
nocardicin
Hydrolases
Amino Acid Isomerases
Peptide Synthases
non-ribosomal peptide synthase

Word Cloud

Created with Highcharts 10.0.0peptidethioesterasedomainnocardicinbiosynthesisproductsNRPSacidaminodomainsdual-functioncompletestructuresNonribosomalsynthetasesNRPSsunderliemanynaturalimportantmedicinalutilityProtectionproteolysiscriticalpathwaysoftenachievedstructuralmodificationprincipallyintroductionD-aminoresidueselongatingacidsgenerallyformedsituL-stereoisomersepimerizationcondensation/epimerizationsingularcontrastmediateseffectivelyL-D-epimerizationC-terminalresidue≥100:1hydrolyticproductreleasereporthereinhigh-resolutioncrystalligand-freeformreactedstructurallyprecisefluorophosphonatesubstratemimicidentifybindingpocketaccommodatestereoisomerscombinedadditionalfunctionalstudiesprovidedetailedmechanisticinsightuniqueStructureboundphosphonaterevealsmechanismbifunctionalepimerase-hydrolasehalf-reactions

Similar Articles

Cited By