pH-Dependent Synthesis of Anisotropic Gold Nanostructures by Bioinspired Cysteine-Containing Peptides.

Aryane Tofanello, ��rica G A Miranda, Igor W R Dias, Alexandre J C Lanfredi, Jeverson T Arantes, Maria A Juliano, Iseli L Nantes
Author Information
  1. Aryane Tofanello: NanoBioMAv, Centro de Ci��ncias Naturais e Humanas (CCNH) and Centro de Engenharia, Modelagem e Ci��ncias Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Avenida dos Estados 5001, Bairro Bangu, 09210-580 Santo Andr��, S��o Paulo, Brazil.
  2. ��rica G A Miranda: NanoBioMAv, Centro de Ci��ncias Naturais e Humanas (CCNH) and Centro de Engenharia, Modelagem e Ci��ncias Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Avenida dos Estados 5001, Bairro Bangu, 09210-580 Santo Andr��, S��o Paulo, Brazil.
  3. Igor W R Dias: NanoBioMAv, Centro de Ci��ncias Naturais e Humanas (CCNH) and Centro de Engenharia, Modelagem e Ci��ncias Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Avenida dos Estados 5001, Bairro Bangu, 09210-580 Santo Andr��, S��o Paulo, Brazil.
  4. Alexandre J C Lanfredi: NanoBioMAv, Centro de Ci��ncias Naturais e Humanas (CCNH) and Centro de Engenharia, Modelagem e Ci��ncias Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Avenida dos Estados 5001, Bairro Bangu, 09210-580 Santo Andr��, S��o Paulo, Brazil.
  5. Jeverson T Arantes: NanoBioMAv, Centro de Ci��ncias Naturais e Humanas (CCNH) and Centro de Engenharia, Modelagem e Ci��ncias Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Avenida dos Estados 5001, Bairro Bangu, 09210-580 Santo Andr��, S��o Paulo, Brazil.
  6. Maria A Juliano: Departamento de Biologia Molecular, Universidade Federal de S��o Paulo, Rua 3 de Maio 100, Vila Clementino, 04044-020 S��o Paulo, S��o Paulo, Brazil.
  7. Iseli L Nantes: NanoBioMAv, Centro de Ci��ncias Naturais e Humanas (CCNH) and Centro de Engenharia, Modelagem e Ci��ncias Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), Avenida dos Estados 5001, Bairro Bangu, 09210-580 Santo Andr��, S��o Paulo, Brazil.

Abstract

In the present study, alkaline peptides AAAXCX (X = lysine or arginine residues) were designed based on the conserved motif of the enzyme thioredoxin and used for the synthesis of gold nanoparticles (GNPs) in the pH range of 2-11. These peptides were compared with free cysteine, the counterpart acidic peptides AAAECE and ��-ECG (glutathione), and the neutral peptide AAAACA. The objective was to investigate the effect of the amino acids neighboring a cysteine residue on the pH-dependent synthesis of gold nanocrystals. Kohn-Sham density functional theory (KS-DFT) calculations indicated an increase in the reducing capacity of AAAKCK favored by the successive deprotonation of their ionizable groups at increasing pH values. Experimentally, it was observed that gold speciation and the peptide structure also have a strong influence on the synthesis and stabilization of GNPs. AAAKCK produced GNPs at room temperature, in the whole investigated pH range. By contrast, alkaline pH was the best condition for the synthesis of GNP assisted by the AAARCR peptide. The acidic peptides produced GNPs only in the presence of polyethylene glycol, and the synthesis using AAAECE and ��-ECG also required heating. The ionization state of AAAKCK had a strong influence on the preferential growth of the GNPs. Therefore, pH had a remarkable effect on the synthesis, kinetics, size, shape, and polydispersity of GNPs produced using AAAKCK. The AAAKCK peptide produced anisotropic decahedral and platelike nanocrystals at acidic pH values and spherical GNPs at alkaline pH values. Both alkaline peptides were also efficient capping agents for GNPs, but they produced a significant difference in the zeta potential, probably because of different orientations on the gold surface.

References

  1. J Am Chem Soc. 2007 Jun 27;129(25):7793-8 [PMID: 17550247]
  2. Nanoscale Res Lett. 2015 May 08;10:213 [PMID: 25991916]
  3. Small. 2005 Nov;1(11):1048-52 [PMID: 17193392]
  4. Nat Mater. 2008 Feb;7(2):120-4 [PMID: 18084296]
  5. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  6. J Am Chem Soc. 2012 Apr 4;134(13):6000-5 [PMID: 22401132]
  7. Appl Spectrosc. 2005 Dec;59(12):1516-26 [PMID: 16390592]
  8. J Phys Chem B. 2006 Feb 16;110(6):2793-7 [PMID: 16471887]
  9. Chem Rev. 2008 Nov;108(11):4935-78 [PMID: 18973389]
  10. World J Biol Chem. 2013 Aug 26;4(3):35-63 [PMID: 23977421]
  11. ACS Appl Mater Interfaces. 2012 Nov;4(11):5844-51 [PMID: 23067227]
  12. Acta Biomater. 2010 Jul;6(7):2681-9 [PMID: 20083240]
  13. Front Chem. 2016 Mar 31;4:13 [PMID: 27066476]
  14. Chem Rev. 2007 Nov;107(11):4797-862 [PMID: 17999554]
  15. Chem Rev. 2007 Jun;107(6):2228-69 [PMID: 17564480]
  16. Nat Protoc. 2008;3(6):991-1000 [PMID: 18536646]
  17. Sci Rep. 2016 Jun 08;6:27575 [PMID: 27273371]
  18. J Mol Biol. 2000 Jun 9;299(3):725-35 [PMID: 10835280]
  19. Nanoscale. 2013 Apr 21;5(8):3172-81 [PMID: 23467455]
  20. Nanoscale. 2014 Mar 21;6(6):3165-72 [PMID: 24496609]
  21. J Colloid Interface Sci. 2008 Jul 15;323(2):247-54 [PMID: 18486946]
  22. Chemistry. 2007;13(11):3160-8 [PMID: 17245786]
  23. Org Biomol Chem. 2015 Jan 28;13(4):974-89 [PMID: 25375353]
  24. J Nanosci Nanotechnol. 2005 Jul;5(7):1141-7 [PMID: 16108441]
  25. J Hazard Mater. 2010 May 15;177(1-3):539-45 [PMID: 20056324]
  26. Small. 2011 Jul 18;7(14):1938-42 [PMID: 21638787]
  27. Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 [PMID: 10004490]
  28. Chem Commun (Camb). 2005 Sep 7;(33):4181-3 [PMID: 16100596]
  29. Biochemistry. 2003 Sep 30;42(38):11214-25 [PMID: 14503871]
  30. Chemistry. 2015 Jun 26;21(27):9596-609 [PMID: 25867678]
  31. Protein Sci. 2006 May;15(5):1214-8 [PMID: 16597822]
  32. Angew Chem Int Ed Engl. 2009;48(1):60-103 [PMID: 19053095]
  33. J Am Chem Soc. 2010 Apr 28;132(16):5677-86 [PMID: 20355728]
  34. Chem Soc Rev. 2006 Jul;35(7):583-92 [PMID: 16791330]
  35. J Phys Chem Lett. 2012 Feb 2;3(3):405-18 [PMID: 26285859]
  36. J Phys Chem Lett. 2016 Feb 18;7(4):632-41 [PMID: 26817922]
  37. Acc Chem Res. 2012 Oct 16;45(10):1688-97 [PMID: 22704731]
  38. Nanoscale Res Lett. 2015 Mar 25;10:147 [PMID: 25852436]
  39. Nano Lett. 2012 Nov 14;12(11):6038-42 [PMID: 23121517]
  40. Protein Sci. 2014 Feb;23(2):238-42 [PMID: 24243781]
  41. Nat Mater. 2003 Sep;2(9):577-85 [PMID: 12951599]
  42. Nano Rev. 2011;2: [PMID: 22110867]

Word Cloud

Created with Highcharts 10.0.0GNPspHsynthesispeptidesAAAKCKproducedalkalinegoldpeptideacidicvaluesalsorangecysteineAAAECE��-ECGeffectnanocrystalsstronginfluenceusingpresentstudyAAAXCXX=lysinearginineresiduesdesignedbasedconservedmotifenzymethioredoxinusednanoparticles2-11comparedfreecounterpartglutathioneneutralAAAACAobjectiveinvestigateaminoacidsneighboringresiduepH-dependentKohn-ShamdensityfunctionaltheoryKS-DFTcalculationsindicatedincreasereducingcapacityfavoredsuccessivedeprotonationionizablegroupsincreasingExperimentallyobservedspeciationstructurestabilizationroomtemperaturewholeinvestigatedcontrastbestconditionGNPassistedAAARCRpresencepolyethyleneglycolrequiredheatingionizationstatepreferentialgrowthThereforeremarkablekineticssizeshapepolydispersityanisotropicdecahedralplatelikesphericalefficientcappingagentssignificantdifferencezetapotentialprobablydifferentorientationssurfacepH-DependentSynthesisAnisotropicGoldNanostructuresBioinspiredCysteine-ContainingPeptides

Similar Articles

Cited By