Targeted Quantitative Proteomic Approach for High-Throughput Quantitative Profiling of Small GTPases in Brain Tissues of Alzheimer's Disease Patients.

Ming Huang, Martin Darvas, C Dirk Keene, Yinsheng Wang
Author Information
  1. Ming Huang: Environmental Toxicology Graduate Program and Department of Chemistry , University of California , Riverside , California 92521 , United States.
  2. Martin Darvas: Department of Pathology , University of Washington , Seattle , Washington 98104 , United States.
  3. C Dirk Keene: Department of Pathology , University of Washington , Seattle , Washington 98104 , United States.
  4. Yinsheng Wang: Environmental Toxicology Graduate Program and Department of Chemistry , University of California , Riverside , California 92521 , United States. ORCID

Abstract

Neurodegenerative disorders, including Alzheimer's disease (AD), are prevalent among the elderly. Small GTPases of the Ras superfamily are essential regulators of intracellular trafficking and signal transduction. In this study, we develop a targeted quantification method for small GTPase proteins, where the method involves scheduled multiple-reaction monitoring analysis and the use of synthetic stable isotope-labeled peptides as internal standards or surrogate standards. We further applied this method to examine the altered expression of small GTPase proteins in post-mortem frontal cortex tissues from AD patients with different degrees of disease severity. We were able to achieve sensitive and reproducible quantifications of 80 small GTPases in brain tissue samples from 15 patients. Our results revealed substantial up-regulations of several synaptic GTPases, i.e., RAB3A/C, RAB4A/B, and RAB27B, in tissues from patients with higher degrees of AD pathology, suggesting that aberrant synaptic trafficking may modulate the progression of AD. The method should be generally applicable for high-throughput targeted quantification of small GTPase proteins in other tissue and cellular samples.

References

  1. J Proteome Res. 2014 Apr 4;13(4):2056-68 [PMID: 24606058]
  2. Sci Data. 2018 Mar 13;5:180036 [PMID: 29533394]
  3. Mol Cell Proteomics. 2013 Feb;12(2):343-55 [PMID: 23161513]
  4. EMBO J. 2018 Oct 15;37(20): [PMID: 30166454]
  5. Ann N Y Acad Sci. 2004 Apr;1014:170-8 [PMID: 15153432]
  6. Proteomics. 2016 Dec;16(23):3042-3053 [PMID: 27718298]
  7. Lancet. 2006 Jul 29;368(9533):387-403 [PMID: 16876668]
  8. J Proteome Res. 2019 Mar 1;18(3):1380-1391 [PMID: 30735395]
  9. Proteomics. 2016 Jan;16(1):159-73 [PMID: 26552850]
  10. J Proteome Res. 2009 Sep;8(9):4243-51 [PMID: 19603825]
  11. J Proteomics. 2013 Apr 9;81:15-23 [PMID: 23022582]
  12. Clin Chem. 2016 Jan;62(1):48-69 [PMID: 26719571]
  13. Proteomics. 2016 Aug;16(15-16):2160-82 [PMID: 27302376]
  14. Cancer Res. 2018 Sep 15;78(18):5431-5445 [PMID: 30072397]
  15. J Proteome Res. 2013 Jul 5;12(7):3353-61 [PMID: 23763644]
  16. Neuropathol Appl Neurobiol. 2007 Oct;33(5):523-32 [PMID: 17573808]
  17. J Proteome Res. 2015 Feb 6;14(2):967-76 [PMID: 25569337]
  18. J Proteome Res. 2012 Jun 1;11(6):3053-67 [PMID: 22559202]
  19. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  20. Biol Psychiatry. 2010 Nov 15;68(10):885-93 [PMID: 20655510]
  21. Anal Chem. 2018 Dec 18;90(24):14551-14560 [PMID: 30431262]
  22. Curr Biol. 2018 Apr 23;28(8):R471-R486 [PMID: 29689231]
  23. J Chem Neuroanat. 2011 Oct;42(2):102-10 [PMID: 21669283]
  24. J Neurosci. 2010 Oct 6;30(40):13441-53 [PMID: 20926670]
  25. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5703-E5711 [PMID: 28652376]
  26. J Neurochem. 2017 May;141(4):592-605 [PMID: 28222213]
  27. Proteomics. 2012 Apr;12(8):1111-21 [PMID: 22577012]
  28. Neuron. 2014 May 21;82(4):756-71 [PMID: 24853936]
  29. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6940-5 [PMID: 12771378]
  30. Clin Proteomics. 2018 Sep 12;15:29 [PMID: 30220890]
  31. J Proteome Res. 2015 Mar 6;14(3):1412-9 [PMID: 25597550]
  32. Curr Drug Targets. 2011 Jul 1;12(8):1188-93 [PMID: 21561417]
  33. Neuron. 2010 Jun 10;66(5):710-23 [PMID: 20547129]
  34. Cells. 2019 Mar 16;8(3): [PMID: 30884855]
  35. Annu Rev Neurosci. 2004;27:509-47 [PMID: 15217342]
  36. Mass Spectrom Rev. 2020 May;39(3):229-244 [PMID: 28691345]
  37. Mol Cell Proteomics. 2011 Jun;10(6):M110.006593 [PMID: 21357624]
  38. Dev Neurobiol. 2011 Jun;71(6):528-53 [PMID: 21557504]
  39. Anal Chem. 2019 May 7;91(9):6233-6241 [PMID: 30943010]
  40. Mol Cell Proteomics. 2014 Jun;13(6):1573-84 [PMID: 24696503]
  41. Neurobiol Aging. 2006 Oct;27(10):1372-84 [PMID: 16289476]
  42. Clin Proteomics. 2013 May 01;10(1):5 [PMID: 23635041]
  43. Nat Methods. 2012 May 30;9(6):555-66 [PMID: 22669653]
  44. Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):E10177-E10186 [PMID: 30301801]
  45. Mol Cell Proteomics. 2019 Mar;18(3):546-560 [PMID: 30606734]
  46. Acta Neuropathol Commun. 2018 Mar 1;6(1):19 [PMID: 29490708]
  47. Nat Methods. 2018 Feb 28;15(3):156-157 [PMID: 29489744]
  48. EMBO J. 2014 Apr 16;33(8):788-822 [PMID: 24596248]
  49. Cell Syst. 2017 Jan 25;4(1):60-72.e4 [PMID: 27989508]
  50. J Alzheimers Dis. 2005 Mar;8(4):377-86 [PMID: 16556969]
  51. Alzheimers Dement. 2016 Jun;12(6):654-68 [PMID: 26772638]
  52. Nat Biotechnol. 2011 Jun 19;29(7):625-34 [PMID: 21685906]

Grants

  1. P50 AG005136/NIA NIH HHS
  2. R01 ES025121/NIEHS NIH HHS
  3. T32 ES018827/NIEHS NIH HHS

MeSH Term

Alzheimer Disease
Brain
Humans
Mass Spectrometry
Monomeric GTP-Binding Proteins
Proteomics
Synapses

Chemicals

Monomeric GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0ADGTPasesmethodsmallGTPaseproteinspatientsAlzheimer'sdiseaseSmalltraffickingtargetedquantificationstandardstissuesdegreestissuesamplessynapticQuantitativeNeurodegenerativedisordersincludingprevalentamongelderlyRassuperfamilyessentialregulatorsintracellularsignaltransductionstudydevelopinvolvesscheduledmultiple-reactionmonitoringanalysisusesyntheticstableisotope-labeledpeptidesinternalsurrogateappliedexaminealteredexpressionpost-mortemfrontalcortexdifferentseverityableachievesensitivereproduciblequantifications80brain15resultsrevealedsubstantialup-regulationsseveralieRAB3A/CRAB4A/BRAB27Bhigherpathologysuggestingaberrantmaymodulateprogressiongenerallyapplicablehigh-throughputcellularTargetedProteomicApproachHigh-ThroughputProfilingBrainTissuesDiseasePatients

Similar Articles

Cited By