Brain-derived neurotrophic factor and schizophrenia.

Pasquale Di Carlo, Giovanna Punzi, Gianluca Ursini
Author Information
  1. Pasquale Di Carlo: Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy Lieber Institute for Brain Development, Johns Hopkins Medical Campus Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.

Abstract

The brain-derived neurotrophic factor (BDNF) is a secretory growth factor that promotes neuronal proliferation and survival, synaptic plasticity and long-term potentiation in the central nervous system. Brain-derived neurotrophic factor biosynthesis and secretion are chrono-topically regulated processes at the cellular level, accounting for specific localizations and functions. Given its role in regulating brain development and activity, BDNF represents a potentially relevant gene for schizophrenia, and indeed BDNF and its non-synonymous functional variant, rs6265 (C → T, Val → Met) have been widely studied in psychiatric genetics. Human and animal studies have indicated that brain-derived neurotrophic factor is relevant for schizophrenia-related phenotypes, and that: (1) fine-tuned regulation of brain-derived neurotrophic factor secretion and activity is necessary to guarantee brain optimal development and functioning; (2) the Val → Met substitution is associated with impaired activity-dependent secretion of brain-derived neurotrophic factor; (3) disruption of brain-derived neurotrophic factor signaling is associated with altered synaptic plasticity and neurodevelopment. However, genome-wide association studies failed to associate the BDNF locus with schizophrenia, even though a sub-threshold association exists. Here, we will review studies focused on the relationship between the genetic variation of BDNF and schizophrenia, trying to fill the gap between genetic risk per se and insights from molecular biology. A deeper understanding of brain-derived neurotrophic factor biology and of the epigenetic regulation of brain-derived neurotrophic factor and its interactome during development may help clarifying the potential role of this gene in schizophrenia, thus informing development of brain-derived neurotrophic factor-based strategies of prevention and treatment of this disorder.

References

  1. Arch Gen Psychiatry. 1987 Jul;44(7):660-9 [PMID: 3606332]
  2. Cell. 2008 Jul 11;134(1):175-87 [PMID: 18614020]
  3. Schizophr Bull. 1998;24(2):203-18 [PMID: 9613621]
  4. Nat Med. 2018 Jun;24(6):792-801 [PMID: 29808008]
  5. Novartis Found Symp. 2008;289:119-29; discussion 129-35, 193-5 [PMID: 18497099]
  6. Genes Brain Behav. 2009 Feb;8(1):5-12 [PMID: 18721261]
  7. Am J Med Genet B Neuropsychiatr Genet. 2005 Apr 5;134B(1):73-5 [PMID: 15719396]
  8. Neurosci Lett. 2003 Dec 15;353(1):75-7 [PMID: 14642442]
  9. Trends Endocrinol Metab. 2014 Feb;25(2):89-98 [PMID: 24361004]
  10. J Psychiatr Res. 2012 Jun;46(6):762-6 [PMID: 22521161]
  11. Biol Psychiatry. 2009 Jun 15;65(12):1006-14 [PMID: 19121517]
  12. Mol Psychiatry. 2012 Dec;17(12):1194-205 [PMID: 22290124]
  13. Hippocampus. 2001;11(5):508-19 [PMID: 11732704]
  14. Neuropsychopharmacology. 2019 Feb;44(3):590-597 [PMID: 30375508]
  15. Mol Psychiatry. 2003 Jun;8(6):592-610 [PMID: 12851636]
  16. Bull Exp Biol Med. 2008 Nov;146(5):605-8 [PMID: 19526102]
  17. Mol Psychiatry. 2011 Sep;16(9):960-72 [PMID: 20733577]
  18. Int J Neuropsychopharmacol. 2010 May;13(4):535-9 [PMID: 19941699]
  19. Am J Psychiatry. 2005 Jun;162(6):1200-2 [PMID: 15930070]
  20. Neuropsychopharmacology. 2016 Jul;41(8):1943-55 [PMID: 26585288]
  21. Schizophr Res. 2007 Aug;94(1-3):1-11 [PMID: 17524622]
  22. Brain Res. 2005 Mar 28;1039(1-2):177-88 [PMID: 15781060]
  23. Cell Signal. 2015 Oct;27(10):2131-6 [PMID: 26120009]
  24. J Neural Transm (Vienna). 2007 Feb;114(2):255-9 [PMID: 16897602]
  25. Mol Psychiatry. 2017 Oct;22(10):1370-1375 [PMID: 28937692]
  26. Nat Biotechnol. 2012 Mar 25;30(5):453-9 [PMID: 22446693]
  27. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Oct 1;39(1):96-101 [PMID: 22642961]
  28. Arch Gen Psychiatry. 2000 Jan;57(1):65-73 [PMID: 10632234]
  29. J Neural Transm (Vienna). 2011 Feb;118(2):249-57 [PMID: 21190051]
  30. Neuron. 2014 Jun 4;82(5):1074-87 [PMID: 24908487]
  31. Psychiatry Res. 2018 May;263:1-6 [PMID: 29482040]
  32. Eur J Hum Genet. 2010 Jun;18(6):707-12 [PMID: 20087404]
  33. Epigenetics. 2016;11(1):11-23 [PMID: 26889735]
  34. Nature. 2014 Jul 24;511(7510):421-7 [PMID: 25056061]
  35. Neuropsychopharmacology. 2010 Dec;35(13):2590-9 [PMID: 20827271]
  36. Diabetologia. 2011 Jun;54(6):1350-9 [PMID: 21369819]
  37. J Neuropsychiatry Clin Neurosci. 2013 Winter;25(1):88-94 [PMID: 23487199]
  38. Mol Psychiatry. 2000 May;5(3):293-300 [PMID: 10889532]
  39. Pharmacol Rep. 2018 Feb;70(1):55-59 [PMID: 29331787]
  40. Science. 2003 Oct 31;302(5646):890-3 [PMID: 14593184]
  41. Mol Psychiatry. 2013 Jun;18(6):713-20 [PMID: 23319002]
  42. Mol Psychiatry. 2008 Sep;13(9):873-7 [PMID: 18195713]
  43. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16481-6 [PMID: 19805324]
  44. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Oct 1;46:181-8 [PMID: 23876786]
  45. Prog Neuropsychopharmacol Biol Psychiatry. 2006 Jul;30(5):924-33 [PMID: 16581172]
  46. Nat Neurosci. 2018 Aug;21(8):1117-1125 [PMID: 30050107]
  47. Prog Mol Biol Transl Sci. 2018;158:195-226 [PMID: 30072054]
  48. Neuropharmacology. 1998 Dec;37(12):1553-61 [PMID: 9886678]
  49. Vitam Horm. 2017;104:19-28 [PMID: 28215295]
  50. Neuropharmacology. 2011 Feb-Mar;60(2-3):467-71 [PMID: 21056046]
  51. Nature. 2005 Dec 15;438(7070):1017-21 [PMID: 16355225]
  52. Cell. 2017 Jun 15;169(7):1177-1186 [PMID: 28622505]
  53. Eur J Neurosci. 2001 Apr;13(7):1320-8 [PMID: 11298792]
  54. Int J Clin Exp Pathol. 2013 Jul 15;6(8):1617-23 [PMID: 23923080]
  55. Science. 2006 Oct 6;314(5796):140-3 [PMID: 17023662]
  56. Nat Rev Drug Discov. 2016 Jul;15(7):485-515 [PMID: 26939910]
  57. Psychopharmacology (Berl). 2004 Jun;174(1):151-62 [PMID: 15205886]
  58. Nat Genet. 2018 Mar;50(3):381-389 [PMID: 29483656]
  59. Genes Brain Behav. 2010 Oct;9(7):712-21 [PMID: 20528954]
  60. Biol Psychiatry. 2012 Jun 1;71(11):996-1005 [PMID: 22036038]
  61. World J Biol Psychiatry. 2017 Aug;18(5):392-400 [PMID: 27712141]
  62. Psychiatr Genet. 2013 Jun;23(3):124-9 [PMID: 23532065]
  63. Neurosci Lett. 2020 May 1;726:133870 [PMID: 30312750]
  64. Transl Psychiatry. 2016 Nov 22;6(11):e958 [PMID: 27874848]
  65. Mol Cell Neurosci. 2008 Jan;37(1):11-9 [PMID: 17919921]
  66. J Neural Transm (Vienna). 2005 Jul;112(7):885-90 [PMID: 15526143]
  67. Neurosci Res. 2009 Sep;65(1):11-22 [PMID: 19523993]
  68. J Neurosci. 2005 Jun 29;25(26):6156-66 [PMID: 15987945]
  69. Nat Commun. 2013;4:2490 [PMID: 24048383]
  70. PLoS One. 2013 Sep 17;8(9):e74264 [PMID: 24069289]
  71. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5942-7 [PMID: 19293383]
  72. Psychiatry Res. 2019 Mar;273:528-536 [PMID: 30710808]
  73. Neurosci Biobehav Rev. 2015 Apr;51:15-30 [PMID: 25562189]
  74. Am J Med Genet B Neuropsychiatr Genet. 2018 Mar;177(2):143-167 [PMID: 29243873]
  75. J Neuroendocrinol. 2012 May;24(5):774-88 [PMID: 22221196]
  76. Neuropsychopharmacology. 2008 Jan;33(1):73-83 [PMID: 17882234]
  77. Psychiatry Clin Neurosci. 2006 Feb;60(1):70-6 [PMID: 16472361]
  78. Nature. 2016 Oct 27;538(7626):523-527 [PMID: 27760116]
  79. J Neurosci. 2003 Jul 30;23(17):6690-4 [PMID: 12890761]
  80. J Neuropsychiatry Clin Neurosci. 2009 Winter;21(1):30-7 [PMID: 19359449]
  81. Nat Rev Genet. 2007 Dec;8(12):943-9 [PMID: 17984972]
  82. Bipolar Disord. 2015 Aug;17(5):528-35 [PMID: 25874530]
  83. Mol Psychiatry. 2000 Sep;5(5):558-62 [PMID: 11032392]
  84. Br J Psychiatry. 2011 Jul;199(1):38-42 [PMID: 21719879]
  85. Biol Psychiatry. 2019 Jul 1;86(1):45-55 [PMID: 31126695]
  86. Am J Psychiatry. 2007 Dec;164(12):1890-9 [PMID: 18056245]
  87. Biol Psychiatry. 2008 Nov 1;64(9):797-802 [PMID: 18486103]
  88. Nat Neurosci. 2016 Jan;19(1):40-7 [PMID: 26619358]
  89. J Neurosci. 2012 Mar 21;32(12):4092-101 [PMID: 22442074]
  90. Neuropsychopharmacology. 2012 Apr;37(5):1297-304 [PMID: 22218094]
  91. Nat Rev Neurosci. 2003 Apr;4(4):299-309 [PMID: 12671646]
  92. Cell. 2003 Jan 24;112(2):257-69 [PMID: 12553913]
  93. Neuroreport. 2008 Jul 16;19(11):1155-8 [PMID: 18596619]
  94. J Mol Neurosci. 2012 Jul;47(3):505-10 [PMID: 22477643]
  95. Front Psychiatry. 2013 Jun 17;4:45 [PMID: 23785335]
  96. Metabolism. 2018 Apr;81:45-51 [PMID: 29217485]
  97. World J Biol Psychiatry. 2019 Sep;20(7):545-554 [PMID: 29938562]
  98. Nat Neurosci. 2015 Nov;18(11):1539-1545 [PMID: 26505565]

Grants

  1. P50 MH094268/NIMH NIH HHS

MeSH Term

Animals
Brain-Derived Neurotrophic Factor
Epigenesis, Genetic
Genome-Wide Association Study
Genotype
Humans
Phenotype
Polymorphism, Single Nucleotide
Schizophrenia

Chemicals

Brain-Derived Neurotrophic Factor

Word Cloud

Created with Highcharts 10.0.0neurotrophicfactorbrain-derivedBDNFschizophreniadevelopmentsecretionstudiessynapticplasticityBrain-derivedrolebrainactivityrelevantgeneValMetregulationassociatedassociationgeneticbiologysecretorygrowthpromotesneuronalproliferationsurvivallong-termpotentiationcentralnervoussystembiosynthesischrono-topicallyregulatedprocessescellularlevelaccountingspecificlocalizationsfunctionsGivenregulatingrepresentspotentiallyindeednon-synonymousfunctionalvariantrs6265CTwidelystudiedpsychiatricgeneticsHumananimalindicatedschizophrenia-relatedphenotypesthat:1fine-tunednecessaryguaranteeoptimalfunctioning2substitutionimpairedactivity-dependent3disruptionsignalingalteredneurodevelopmentHowevergenome-widefailedassociatelocuseventhoughsub-thresholdexistswillreviewfocusedrelationshipvariationtryingfillgapriskperseinsightsmoleculardeeperunderstandingepigeneticinteractomemayhelpclarifyingpotentialthusinformingfactor-basedstrategiespreventiontreatmentdisorder

Similar Articles

Cited By