Antibiotic Resistant Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies.

Laura Quintieri, Francesca Fanelli, Leonardo Caputo
Author Information
  1. Laura Quintieri: Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
  2. Francesca Fanelli: Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy. francesca.fanelli@ispa.cnr.it.
  3. Leonardo Caputo: Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.

Abstract

Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few "hubs" where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains () are associated with some human diseases, but are still poorly considered in comparison to the pathogen In addition, the presence of ARGs, that can be acquired and transmitted by horizontal genetic transfer, further increases their risk and the need to be deeper investigated. Therefore, this review, starting from the general aspects related to the physiological traits of these spoilage microorganisms from fresh dairy products, aims to shed light on the resistome of cheese-related pseudomonads and their genomic background, current methods and advances in the prediction tools for MDR detection based on genomic sequences, possible implications for human health, and the affordable strategies to counteract MDR spread.

Keywords

References

  1. mBio. 2017 Aug 8;8(4): [PMID: 28790210]
  2. J Food Sci. 2014 Oct;79(10):M2081-90 [PMID: 25224662]
  3. Appl Environ Microbiol. 2011 Mar;77(5):1885-7 [PMID: 21193671]
  4. Front Microbiol. 2016 Feb 19;7:173 [PMID: 26925045]
  5. Antimicrob Agents Chemother. 2011 Jan;55(1):118-23 [PMID: 21060106]
  6. Bioorg Med Chem. 2018 Aug 7;26(14):4088-4099 [PMID: 30100021]
  7. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  8. Emerg Microbes Infect. 2017 May 10;6(5):e29 [PMID: 28487556]
  9. Antimicrob Agents Chemother. 2014;58(1):212-20 [PMID: 24145532]
  10. J Appl Microbiol. 2019 Sep;127(3):763-777 [PMID: 31125995]
  11. Microbiology (Reading). 2017 Nov;163(11):1613-1625 [PMID: 29034850]
  12. Ital J Food Saf. 2016 May 11;5(2):5760 [PMID: 27800450]
  13. Biochem Pharmacol. 2017 Jun 1;133:152-163 [PMID: 27687641]
  14. Food Microbiol. 2019 Sep;82:177-193 [PMID: 31027772]
  15. Expert Rev Anti Infect Ther. 2012 Feb;10(2):219-35 [PMID: 22339195]
  16. Microbiology (Reading). 2010 Jan;156(Pt 1):39-48 [PMID: 19833777]
  17. Front Microbiol. 2017 Mar 02;8:264 [PMID: 28303120]
  18. Sci Rep. 2018 Oct 11;8(1):15116 [PMID: 30310126]
  19. PLoS One. 2015 Oct 09;10(10):e0140059 [PMID: 26451836]
  20. PLoS One. 2016 Feb 25;11(2):e0150183 [PMID: 26915094]
  21. Adv Appl Microbiol. 2018;103:223-246 [PMID: 29914658]
  22. Food Microbiol. 2016 Aug;57:116-27 [PMID: 27052710]
  23. Food Microbiol. 2012 Aug;31(1):64-71 [PMID: 22475944]
  24. Antimicrob Agents Chemother. 2004 Jun;48(6):2334-6 [PMID: 15155248]
  25. Microbiol Res. 2007;162(2):115-23 [PMID: 16580186]
  26. J Enzyme Inhib Med Chem. 2017 Dec;32(1):917-919 [PMID: 28719998]
  27. Antimicrob Agents Chemother. 2003 Oct;47(10):3067-72 [PMID: 14506010]
  28. Appl Environ Microbiol. 2002 Jun;68(6):2745-53 [PMID: 12039729]
  29. Appl Environ Microbiol. 1998 Mar;64(3):914-21 [PMID: 9501431]
  30. J Bacteriol. 2011 Dec;193(23):6789-90 [PMID: 22072645]
  31. Front Microbiol. 2019 Feb 06;10:94 [PMID: 30787912]
  32. Nat Ecol Evol. 2017 Sep;1(9):1354-1363 [PMID: 29046540]
  33. Int J Food Microbiol. 2016 Jan 4;216:9-17 [PMID: 26384211]
  34. J Antimicrob Chemother. 2017 Jan;72(1):104-114 [PMID: 27667325]
  35. Int J Food Microbiol. 2008 Sep 30;127(1-2):37-42 [PMID: 18632174]
  36. Curr Opin Microbiol. 2013 Oct;16(5):580-9 [PMID: 23880136]
  37. Trends Microbiol. 2019 Apr;27(4):323-338 [PMID: 30683453]
  38. PLoS One. 2013;8(3):e59366 [PMID: 23555661]
  39. Food Microbiol. 2012 Feb;29(1):88-98 [PMID: 22029922]
  40. Appl Environ Microbiol. 1993 Apr;59(4):1018-24 [PMID: 8476279]
  41. BMC Microbiol. 2011 Nov 15;11:252 [PMID: 22085438]
  42. J Bacteriol. 1998 Jul;180(13):3323-9 [PMID: 9642183]
  43. Int J Antimicrob Agents. 2001 Mar;17(3):171-6 [PMID: 11282261]
  44. ACS Chem Biol. 2014 Aug 15;9(8):1834-45 [PMID: 24918118]
  45. Antimicrob Agents Chemother. 2014;58(3):1816-21 [PMID: 24395220]
  46. ERJ Open Res. 2018 Jun 26;4(2): [PMID: 29977898]
  47. Int J Environ Res Public Health. 2013 Jun 28;10(7):2643-69 [PMID: 23812024]
  48. Food Microbiol. 2012 May;30(1):37-44 [PMID: 22265281]
  49. J Appl Microbiol. 2003;95(4):874-82 [PMID: 12969304]
  50. Int J Food Microbiol. 2018 Mar 23;269:98-106 [PMID: 29421365]
  51. Antimicrob Agents Chemother. 1995 Jul;39(7):1569-73 [PMID: 7492106]
  52. J Appl Microbiol. 2008 Jul;105(1):271-8 [PMID: 18284486]
  53. J Food Prot. 2001 Feb;64(2):228-34 [PMID: 11271772]
  54. J Antimicrob Chemother. 2012 Nov;67(11):2640-4 [PMID: 22782487]
  55. Microbiol Resour Announc. 2018 Nov 1;7(17): [PMID: 30533753]
  56. Sci Rep. 2016 Jan 11;6:19141 [PMID: 26751736]
  57. Nat Commun. 2017 Jun 07;8:15784 [PMID: 28589945]
  58. Genome Announc. 2016 Oct 13;4(5): [PMID: 27738044]
  59. Nat Rev Microbiol. 2015 Jan;13(1):42-51 [PMID: 25435309]
  60. Probiotics Antimicrob Proteins. 2019 Jun;11(2):370-381 [PMID: 30229514]
  61. PLoS One. 2011;6(11):e27297 [PMID: 22132095]
  62. FEMS Microbiol Rev. 2018 Jan 1;42(1): [PMID: 29069382]
  63. ScientificWorldJournal. 2014;2014:930727 [PMID: 25436236]
  64. J Clin Pathol. 1985 Sep;38(9):1055-8 [PMID: 4044874]
  65. Compr Rev Food Sci Food Saf. 2017 Sep;16(5):1022-1041 [PMID: 33371605]
  66. Appl Environ Microbiol. 2017 Dec 1;83(24): [PMID: 29030440]
  67. Antimicrob Agents Chemother. 2010 Jun;54(6):2420-4 [PMID: 20308383]
  68. J Food Prot. 2013 Mar;76(3):500-4 [PMID: 23462088]
  69. Sci Rep. 2016 May 26;6:26717 [PMID: 27225966]
  70. J Med Microbiol. 2010 Jul;59(Pt 7):853-855 [PMID: 20360397]
  71. BMC Microbiol. 2013 Dec 01;13:272 [PMID: 24289541]
  72. Microbiology (Reading). 2000 Oct;146 ( Pt 10):2385-2394 [PMID: 11021915]
  73. J Glob Antimicrob Resist. 2015 Jun;3(2):109-114 [PMID: 27873658]
  74. Antimicrob Agents Chemother. 2010 Jan;54(1):45-51 [PMID: 19884377]
  75. Antonie Van Leeuwenhoek. 2004 Jul;86(1):51-64 [PMID: 15103237]
  76. Food Microbiol. 2019 Jun;79:96-115 [PMID: 30621881]
  77. World J Microbiol Biotechnol. 2012 May;28(5):2039-45 [PMID: 22806025]
  78. Front Microbiol. 2019 May 24;10:1154 [PMID: 31178851]
  79. Genome Announc. 2017 Oct 26;5(43): [PMID: 29074656]
  80. J Antimicrob Chemother. 2015 Nov;70(11):3042-50 [PMID: 26209311]
  81. Sci Rep. 2018 Oct 3;8(1):14728 [PMID: 30283025]
  82. Mol Microbiol. 2003 Oct;50(1):205-17 [PMID: 14507375]
  83. Int J Med Microbiol. 2016 Jan;306(1):48-58 [PMID: 26687205]
  84. Environ Microbiol. 2010 Jun;12(6):1513-30 [PMID: 20192968]
  85. Microb Drug Resist. 2019 Jan/Feb;25(1):1-7 [PMID: 30036133]
  86. Nat Commun. 2019 Mar 8;10(1):1124 [PMID: 30850636]
  87. Antimicrob Agents Chemother. 1994 Aug;38(8):1732-41 [PMID: 7986003]
  88. Mol Microbiol. 1999 Jan;31(1):394-5 [PMID: 9987140]
  89. Appl Environ Microbiol. 2003 Jan;69(1):130-8 [PMID: 12513987]
  90. Clin Microbiol Rev. 2014 Oct;27(4):927-48 [PMID: 25278578]
  91. Antimicrob Agents Chemother. 2015 Feb;59(2):1334-6 [PMID: 25421471]
  92. Front Microbiol. 2018 Mar 23;9:521 [PMID: 29662475]
  93. J Dairy Sci. 2011 Dec;94(12):5851-6 [PMID: 22118075]
  94. World J Emerg Med. 2017;8(2):151-154 [PMID: 28458762]
  95. Front Microbiol. 2015 Mar 18;6:214 [PMID: 26074881]
  96. Front Microbiol. 2015 Feb 05;6:34 [PMID: 25699027]
  97. J Bacteriol. 2003 Nov;185(21):6233-40 [PMID: 14563857]
  98. Appl Environ Microbiol. 2006 Jul;72(7):4663-71 [PMID: 16820458]
  99. Syst Appl Microbiol. 2012 Oct;35(7):455-64 [PMID: 23140936]
  100. Antimicrob Agents Chemother. 2012 Apr;56(4):2216-7 [PMID: 22290983]
  101. Int J Food Microbiol. 2018 Dec 20;287:10-17 [PMID: 29157743]
  102. J Dairy Res. 2018 May;85(2):232-237 [PMID: 29785903]
  103. Sci Rep. 2016 Jun 14;6:27930 [PMID: 27297683]
  104. Biomedicines. 2018 Jun 17;6(2): [PMID: 29914193]
  105. Res Microbiol. 2016 Oct;167(8):625-629 [PMID: 27208659]
  106. J Biol Chem. 2016 Jul 22;291(30):15503-14 [PMID: 27235402]
  107. J Clin Microbiol. 2011 Jan;49(1):263-8 [PMID: 21084517]
  108. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160595]
  109. Int J Syst Evol Microbiol. 2000 Jul;50 Pt 4:1563-1589 [PMID: 10939664]
  110. Nat Rev Microbiol. 2019 Jan;17(1):3 [PMID: 30467331]
  111. Antimicrob Agents Chemother. 2014 Aug;58(8):4986 [PMID: 25028728]
  112. Curr Microbiol. 2011 Feb;62(2):544-6 [PMID: 20730433]
  113. Antimicrob Agents Chemother. 2018 Jul 27;62(8): [PMID: 29784850]
  114. PLoS One. 2014 Jan 17;9(1):e81604 [PMID: 24465371]
  115. Microbiology (Reading). 2001 Jan;147(Pt 1):43-51 [PMID: 11160799]
  116. Int J Food Microbiol. 2015 Dec 23;215:179-86 [PMID: 26453993]
  117. Microb Drug Resist. 2018 Jun;24(5):627-634 [PMID: 29298123]
  118. Ital J Food Saf. 2017 Dec 11;6(4):6939 [PMID: 29564238]
  119. Appl Environ Microbiol. 2018 Dec 13;85(1): [PMID: 30366996]
  120. Front Cell Infect Microbiol. 2019 Apr 02;9:84 [PMID: 31001488]
  121. Evolution. 2016 Mar;70(3):725-30 [PMID: 26880677]
  122. Genome Announc. 2018 Mar 22;6(12): [PMID: 29567743]
  123. Infect Genet Evol. 2009 Dec;9(6):1132-47 [PMID: 19712752]
  124. Int J Food Microbiol. 2019 Apr 16;295:49-53 [PMID: 30802684]
  125. Nat Rev Microbiol. 2015 May;13(5):310-7 [PMID: 25817583]
  126. Nucleic Acids Res. 2016 Jan 4;44(D1):D646-53 [PMID: 26578582]
  127. Biomed Res Int. 2014;2014:290967 [PMID: 25243126]
  128. J Food Sci. 2016 Apr;81(4):M944-51 [PMID: 26910385]
  129. J Clin Microbiol. 2016 Apr;54(4):851-9 [PMID: 26818666]
  130. mSystems. 2016 Jun 14;1(3): [PMID: 27822529]
  131. Stand Genomic Sci. 2016 Aug 23;11(1):51 [PMID: 27555890]
  132. Biochimie. 2009 Jan;91(1):52-7 [PMID: 18585434]
  133. Environ Microbiol. 2010 Jun;12(6):1377-83 [PMID: 20553550]
  134. Appl Environ Microbiol. 2011 Jan;77(2):460-70 [PMID: 21115713]
  135. J Antimicrob Chemother. 2016 Apr;71(4):909-12 [PMID: 26679251]
  136. Mol Microbiol. 2010 Jan;75(1):76-91 [PMID: 19943895]
  137. Stand Genomic Sci. 2016 Sep 26;11:75 [PMID: 28300228]
  138. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11064-9 [PMID: 16043691]
  139. Appl Environ Microbiol. 2014 Nov;80(21):6792-806 [PMID: 25172860]
  140. Appl Environ Microbiol. 2008 Jun;74(11):3387-93 [PMID: 18390672]
  141. Int J Food Microbiol. 2015 Nov 20;213:88-98 [PMID: 26051958]
  142. Int J Food Microbiol. 2019 Feb 2;290:86-95 [PMID: 30317110]
  143. Int J Food Microbiol. 2018 May 19;281:10-22 [PMID: 29803134]
  144. BMC Genomics. 2017 Nov 10;18(1):859 [PMID: 29126393]
  145. J Bacteriol. 1972 Apr;110(1):1-11 [PMID: 4622897]
  146. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735): [PMID: 29061896]
  147. New Microbes New Infect. 2018 Jul 09;25:45-47 [PMID: 30090632]
  148. Genes (Basel). 2018 May 22;9(5): [PMID: 29789467]
  149. Annu Rev Food Sci Technol. 2019 Mar 25;10:151-172 [PMID: 30633564]
  150. J Appl Microbiol. 2008 Jun;104(6):1552-61 [PMID: 18194252]
  151. Res Microbiol. 2012 Feb;163(2):83-91 [PMID: 22138596]
  152. Biochem Pharmacol. 2007 Dec 15;74(12):1686-701 [PMID: 17597585]
  153. Food Microbiol. 2015 Apr;46:15-24 [PMID: 25475261]
  154. Int J Food Microbiol. 2004 Aug 1;94(3):223-53 [PMID: 15246235]
  155. Antimicrob Agents Chemother. 2010 Jan;54(1):328-32 [PMID: 19901091]
  156. Microbiol Mol Biol Rev. 2014 Jun;78(2):257-77 [PMID: 24847022]
  157. PLoS One. 2017 Mar 2;12(3):e0172908 [PMID: 28253357]
  158. Bioinformatics. 2013 Oct 1;29(19):2515-6 [PMID: 23943635]

Word Cloud

Created with Highcharts 10.0.0MDRdairyproductspseudomonadshealthmicroorganismsantibioticARGsfoodfreshspoilagehumanresistancecontroltransfermicrobiotacanconsideredsppresistomepossiblegenomicstrategiesMicrobialmultidruggrowingthreatpublicmostlymakesfightcauselethalinfectionseverlesseffectiveThussurveillancerecentlystrengthenedtakingaccountabusewellmechanismsunderlyinggenesamongnaturallyoccurringenvironmentIndeedconfinedpathogenicbacteriawhosediffusionclinicalfieldarousedseriousconcernswidespreadsaprophyticbacterialcommunitiesdominatingindustryparticularreservoirpotentiallytransmittableconsumersMilkcheesesrepresentone"hubs"commensalopportunisticfrequentlycohabittogetherhazardpathogensevenacrossmanufacturingprocesseswidelystudiedeffectsinsteadunderestimatedimpactRecentevidenceshighlightednon-pathogenicstrainsassociateddiseasesstillpoorlycomparisonpathogenadditionpresenceacquiredtransmittedhorizontalgeneticincreasesriskneeddeeperinvestigatedThereforereviewstartinggeneralaspectsrelatedphysiologicaltraitsaimsshedlightcheese-relatedbackgroundcurrentmethodsadvancespredictiontoolsdetectionbasedsequencesimplicationsaffordablecounteractspreadAntibioticResistantSppSpoilersFreshDairyProducts:UnderestimatedRiskControlStrategiesbiofilmgenomicsquorumsensing

Similar Articles

Cited By