RFRP3 influences basal lamina degradation, cellular death, and progesterone secretion in cultured preantral ovarian follicles from the domestic cat.

Kathryn Wilsterman, George E Bentley, Pierre Comizzoli
Author Information
  1. Kathryn Wilsterman: Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America.
  2. George E Bentley: Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America.
  3. Pierre Comizzoli: Smithsonian Conservation Biology Institute, Washington, DC, United States of America.

Abstract

The hypothalamic neuropeptide RFRP3 can suppress hypothalamic GnRH neuron activation and inhibit gonadotropin release from the anterior pituitary. RFRP3 is also produced locally in the ovary and can inhibit steroidogenesis and follicle development in many vertebrates. However, almost nothing is known about the presence and regulatory action of RFRP3 in gonads of any carnivore species. Such knowledge is important for developing captive breeding programs for endangered carnivores and for inhibiting reproduction in feral species. Using the domestic cat as a model, our objectives were to (1) demonstrate the expression of feline RFRP3 (fRFRP3) and its receptor in the cat ovary and (2) assess the influence of fRFRP3 on ovarian follicle integrity, survival, and steroidogenesis . We first confirmed that fRFRP3 and its receptors (NPFFR1 and NPFFR2) were expressed in cat ovaries by sequencing PCR products from ovarian RNA. We then isolated and cultured preantral ovarian follicles in the presence of 10 or 1 µM fRFRP3 + FSH (1 µg/mL). We recorded the percentage of morphologically viable follicles (basal lamina integrity) over 8 days and calculated percentage survival of follicles on Day 8 (using fluorescent markers for cell survival and death). Last, we quantified progesterone accumulation in media. 10 µM fRFRP3 had no observable effect on viability, survival, or steroid production compared to follicles exposed to only FSH. However, 1 µM fRFRP3 decreased the percentage of morphologically viable follicles and the percentage of surviving follicles on Day 8. At the same time, 1 µM fRFRP3 increased the accumulation of progesterone in media. Our study shows, for the first time, direct action of RFRP3 on the follicle as a functional unit, and it is the first in a carnivore species. More broadly, our results support a conserved, inhibitory action of RFRP3 on ovarian follicle development and underscore the importance of comparative functional studies.

Keywords

References

  1. Biol Reprod. 1999 Jul;61(1):188-94 [PMID: 10377048]
  2. Biochem Biophys Res Commun. 2000 Aug 28;275(2):661-7 [PMID: 10964719]
  3. J Endocrinol. 2004 Jul;182(1):33-42 [PMID: 15225129]
  4. J Comp Neurol. 2004 Sep 20;477(3):310-23 [PMID: 15305367]
  5. Reprod Biol Endocrinol. 2005 Sep 14;3:47 [PMID: 16162282]
  6. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2410-5 [PMID: 16467147]
  7. Theriogenology. 2006 Jul 1;66(1):37-48 [PMID: 16630653]
  8. J Exp Zool A Comp Exp Biol. 2006 Sep 1;305(9):801-6 [PMID: 16902951]
  9. Biol Reprod. 2006 Dec;75(6):916-23 [PMID: 16957022]
  10. Neuropharmacology. 2007 Feb;52(2):376-86 [PMID: 17011599]
  11. Semin Reprod Med. 2007 Jul;25(4):287-99 [PMID: 17594609]
  12. Reprod Domest Anim. 2007 Oct;42(5):536-40 [PMID: 17845610]
  13. Gen Comp Endocrinol. 2008 Mar 1;156(1):34-43 [PMID: 18031743]
  14. Reproduction. 2008 Feb;135(2):267-74 [PMID: 18239054]
  15. Endocrinology. 2008 Nov;149(11):5811-21 [PMID: 18617613]
  16. J Endocrinol. 2008 Oct;199(1):105-12 [PMID: 18653621]
  17. Gen Comp Endocrinol. 2008 Nov-Dec;159(2-3):158-69 [PMID: 18809405]
  18. Endocrinology. 2009 Apr;150(4):1834-40 [PMID: 19022888]
  19. Endocrinology. 2009 Jun;150(6):2799-804 [PMID: 19131572]
  20. Domest Anim Endocrinol. 2009 May;36(4):219-24 [PMID: 19328642]
  21. Endocrinology. 2010 Feb;151(2):617-27 [PMID: 20051487]
  22. Peptides. 2010 Jun;31(6):1034-43 [PMID: 20226824]
  23. Fertil Steril. 2011 Mar 15;95(4):1397-404 [PMID: 20452585]
  24. Brain Res. 2010 Dec 10;1364:62-71 [PMID: 20934414]
  25. J Neuroendocrinol. 2011 Jan;23(1):39-51 [PMID: 21083774]
  26. Front Pharmacol. 2010 Sep 09;1:114 [PMID: 21607065]
  27. Hum Reprod. 2011 Aug;26(8):2165-77 [PMID: 21665874]
  28. J Mol Histol. 2011 Oct;42(5):371-81 [PMID: 21769536]
  29. Endocrinology. 2011 Sep;152(9):3461-70 [PMID: 21771888]
  30. Anim Reprod Sci. 2011 Nov;129(1-2):78-81 [PMID: 22024367]
  31. Endocrinology. 2012 Jan;153(1):373-85 [PMID: 22045661]
  32. Endocrinology. 2012 Mar;153(3):1352-63 [PMID: 22275511]
  33. Gen Comp Endocrinol. 2012 Jul 1;177(3):305-14 [PMID: 22391238]
  34. Endocrinology. 2012 May;153(5):2362-74 [PMID: 22454150]
  35. Peptides. 2012 Aug;36(2):176-85 [PMID: 22664321]
  36. Endocrinology. 2012 Jul;153(7):3435-45 [PMID: 22691551]
  37. Reprod Domest Anim. 2012 Dec;47 Suppl 6:13-8 [PMID: 23279457]
  38. Biol Reprod. 2013 Apr 11;88(4):89 [PMID: 23467740]
  39. Mol Cell Endocrinol. 2013 Jun 15;372(1-2):65-72 [PMID: 23541949]
  40. PeerJ. 2013 Aug 15;1:e139 [PMID: 24024084]
  41. Genet Mol Res. 2014 Jan 14;13(1):1661-71 [PMID: 24446341]
  42. Reprod Domest Anim. 2014 Oct;49(5):831-8 [PMID: 25039406]
  43. Endocrinology. 2014 Nov;155(11):4391-401 [PMID: 25144920]
  44. J Comp Neurol. 2016 Jan 1;524(1):176-98 [PMID: 26105807]
  45. Gen Comp Endocrinol. 2016 Feb 1;227:51-7 [PMID: 26158243]
  46. Reprod Fertil Dev. 2017 Feb;29(2):262-273 [PMID: 26234151]
  47. Endocrinology. 2015 Nov;156(11):4152-62 [PMID: 26259035]
  48. FASEB J. 2016 Jun;30(6):2198-210 [PMID: 26929433]
  49. Reprod Domest Anim. 2017 Apr;52 Suppl 2:327-331 [PMID: 27892642]
  50. Comp Biochem Physiol B Biochem Mol Biol. 2017 Apr;206:26-34 [PMID: 28077332]
  51. Mol Cell Endocrinol. 2017 Jul 15;450:1-13 [PMID: 28400274]
  52. Integr Comp Biol. 2017 Dec 1;57(6):1194-1203 [PMID: 28992195]
  53. Comp Biochem Physiol B Biochem Mol Biol. 2018 Feb;216:59-68 [PMID: 29223873]
  54. Peptides. 2018 Mar;101:106-111 [PMID: 29337271]
  55. J Neuroendocrinol. 2018 Jul;30(7):e12597 [PMID: 29624758]
  56. Reprod Fertil Dev. 2018 Oct;30(10):1369-1379 [PMID: 29720337]
  57. Theriogenology. 2019 Jan 1;123:116-122 [PMID: 30296652]
  58. J Endocrinol. 2018 Oct 01;239(1):81–91 [PMID: 30307156]
  59. Biol Reprod. 2019 May 1;100(5):1158-1170 [PMID: 30770538]
  60. Biol Reprod. 2019 Feb 17;:null [PMID: 30772911]

Word Cloud

Created with Highcharts 10.0.0RFRP3fRFRP3folliclesovarianfolliclecatsurvivalpercentageactionspeciesfirst1 µM8progesteronehypothalamiccaninhibitovarysteroidogenesisdevelopmentHoweverpresencecarnivoredomesticintegrityculturedpreantralFSHmorphologicallyviablebasallaminaDaydeathaccumulationmediatimefunctionalneuropeptidesuppressGnRHneuronactivationgonadotropinreleaseanteriorpituitaryalsoproducedlocallymanyvertebratesalmostnothingknownregulatorygonadsknowledgeimportantdevelopingcaptivebreedingprogramsendangeredcarnivoresinhibitingreproductionferalUsingmodelobjectives1demonstrateexpressionfelinereceptor2assessinfluenceconfirmedreceptorsNPFFR1NPFFR2expressedovariessequencingPCRproductsRNAisolated10+1 µg/mLrecordeddayscalculatedusingfluorescentmarkerscellLastquantified10 µMobservableeffectviabilitysteroidproductioncomparedexposeddecreasedsurvivingincreasedstudyshowsdirectunitbroadlyresultssupportconservedinhibitoryunderscoreimportancecomparativestudiesinfluencesdegradationcellularsecretionGnIHHPGNPVFOvaryReproductionSteroid

Similar Articles

Cited By