Anthracyclines Suppress Both NADPH Oxidase- Dependent and -Independent NETosis in Human Neutrophils.

Meraj A Khan, Adam D'Ovidio, Harvard Tran, Nades Palaniyar
Author Information
  1. Meraj A Khan: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686, Bay St., Toronto, ON M5G 0A4, Canada.
  2. Adam D'Ovidio: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686, Bay St., Toronto, ON M5G 0A4, Canada.
  3. Harvard Tran: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686, Bay St., Toronto, ON M5G 0A4, Canada.
  4. Nades Palaniyar: Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686, Bay St., Toronto, ON M5G 0A4, Canada. nades.palaniyar@sickkids.ca. ORCID

Abstract

Neutrophil extracellular traps (NETs) are cytotoxic DNA-protein complexes that play positive and negative roles in combating infection, inflammation, organ damage, autoimmunity, sepsis and cancer. However, NETosis regulatory effects of most of the clinically used drugs are not clearly established. Several recent studies highlight the relevance of NETs in promoting both cancer cell death and metastasis. Here, we screened the NETosis regulatory ability of 126 compounds belonging to 39 classes of drugs commonly used for treating cancer, blood cell disorders and other diseases. Our studies show that anthracyclines (e.g., epirubicin, daunorubicin, doxorubicin, and idarubicin) consistently suppress both NADPH oxidase-dependent and -independent types of NETosis in Human neutrophils, ex vivo. The intercalating property of anthracycline may be enough to alter the transcription initiation and lead NETosis inhibition. Notably, the inhibitory doses of anthracyclines neither suppress the production of reactive oxygen species that are necessary for antimicrobial functions nor induce apoptotic cell death in neutrophils. Therefore, anthracyclines are a major class of drug that suppresses NETosis. The dexrazoxane, a cardioprotective agent, used for limiting the side effects of anthracyclines, neither affect NETosis nor alter the ability of anthracyclines to suppress NETosis. Hence, at correct doses, anthracyclines together with dexrazoxane could be considered as a therapeutic candidate drug for suppressing unwanted NETosis in NET-related diseases.

Keywords

References

  1. Cancer Res. 2016 Aug 1;76(15):4311-5 [PMID: 27402078]
  2. Chem Biol. 2010 May 28;17(5):421-33 [PMID: 20534341]
  3. Clin Sci (Lond). 2016 Apr 1;130(7):479-90 [PMID: 26888560]
  4. PLoS Pathog. 2009 Oct;5(10):e1000639 [PMID: 19876394]
  5. Cell Mol Life Sci. 2014 Nov;71(21):4179-94 [PMID: 25070012]
  6. Top Curr Chem. 2008;283:1-19 [PMID: 23605626]
  7. Sci Rep. 2017 Feb 08;7:41749 [PMID: 28176807]
  8. J Innate Immun. 2009;1(3):194-201 [PMID: 20375577]
  9. J Immunol. 2011 Aug 15;187(4):1856-65 [PMID: 21724991]
  10. Cell Microbiol. 2006 Apr;8(4):668-76 [PMID: 16548892]
  11. J Dent Res. 2016 Jan;95(1):26-34 [PMID: 26442948]
  12. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2817-22 [PMID: 25730848]
  13. J Natl Cancer Inst. 2002 Jan 16;94(2):78-9 [PMID: 11792737]
  14. Elife. 2017 Jun 02;6: [PMID: 28574339]
  15. Immunity. 2013 Nov 14;39(5):874-84 [PMID: 24184056]
  16. Pharmacol Rep. 2009 Jan-Feb;61(1):154-71 [PMID: 19307704]
  17. J Musculoskelet Neuronal Interact. 2008 Oct-Dec;8(4):327-8 [PMID: 19147960]
  18. J Cell Biol. 2010 Nov 1;191(3):677-91 [PMID: 20974816]
  19. DNA. 1989 Oct;8(8):595-604 [PMID: 2574659]
  20. Biomolecules. 2019 Aug 14;9(8):null [PMID: 31416173]
  21. Cell Res. 2011 Feb;21(2):290-304 [PMID: 21060338]
  22. J Thromb Haemost. 2011 Nov;9(11):2313-21 [PMID: 21838758]
  23. Pharmacol Res. 2007 Oct;56(4):275-87 [PMID: 17897837]
  24. Nat Rev Cancer. 2009 May;9(5):327-37 [PMID: 19377505]
  25. Cell Death Differ. 2011 Apr;18(4):581-8 [PMID: 21293492]
  26. J Cell Biol. 2012 Sep 3;198(5):773-83 [PMID: 22945932]
  27. Clin Exp Immunol. 2007 Feb;147(2):255-64 [PMID: 17223966]
  28. J Pediatr Hematol Oncol. 2018 Aug;40(6):417-425 [PMID: 29432315]
  29. Nat Rev Cancer. 2009 May;9(5):338-50 [PMID: 19377506]
  30. Thromb Haemost. 2012 Mar;107(3):597-8 [PMID: 22318427]
  31. Sci Transl Med. 2013 Mar 27;5(178):178ra40 [PMID: 23536012]
  32. Front Immunol. 2013 Jan 24;4:1 [PMID: 23355837]
  33. PLoS One. 2014 May 12;9(5):e97088 [PMID: 24819773]
  34. Science. 2004 Mar 5;303(5663):1532-5 [PMID: 15001782]
  35. Biomolecules. 2015 May 04;5(2):702-23 [PMID: 25946076]
  36. Cell Death Discov. 2018 Apr 27;4:51 [PMID: 29736268]
  37. PLoS One. 2012;7(8):e42984 [PMID: 22912772]
  38. Haemophilia. 2017 Nov;23(6):844-851 [PMID: 28984010]
  39. Front Immunol. 2018 Jan 09;8:1849 [PMID: 29375550]
  40. Br J Haematol. 2001 Dec;115(4):817-25 [PMID: 11843815]
  41. Biochemistry. 1987 Feb 24;26(4):1152-63 [PMID: 3567161]
  42. Front Immunol. 2018 Mar 05;9:337 [PMID: 29556228]
  43. Front Med (Lausanne). 2018 Feb 13;5:19 [PMID: 29487850]
  44. J Leukoc Biol. 1996 Feb;59(2):229-40 [PMID: 8603995]
  45. Pharmacogenet Genomics. 2011 Jul;21(7):440-6 [PMID: 21048526]
  46. Biochem Soc Trans. 2009 Aug;37(Pt 4):830-7 [PMID: 19614603]
  47. Semin Thromb Hemost. 2014 Apr;40(3):277-83 [PMID: 24590420]
  48. Biochem J. 2002 Nov 15;368(Pt 1):131-6 [PMID: 12164785]
  49. Br J Pharmacol. 2011 Mar;162(6):1239-49 [PMID: 21091654]
  50. Methods Mol Biol. 2009;565:239-57 [PMID: 19551366]
  51. Mol Immunol. 2018 May;97:71-81 [PMID: 29571059]
  52. Anesthesiology. 2015 Apr;122(4):864-75 [PMID: 25665049]
  53. Br J Pharmacol. 2017 Nov;174(21):3677-3695 [PMID: 28261787]
  54. Blood. 2014 Jan 23;123(4):597-600 [PMID: 24458280]
  55. Invest New Drugs. 2015 Oct;33(5):1032-9 [PMID: 26268925]
  56. J Cell Biochem. 2013 Mar;114(3):532-40 [PMID: 22961925]
  57. Biochim Biophys Acta. 2014 Jan;1845(1):84-9 [PMID: 24361676]
  58. Nat Med. 2009 Jun;15(6):623-5 [PMID: 19448636]
  59. Oncoscience. 2015 Nov 16;2(11):900-1 [PMID: 26697516]
  60. J Immunol. 2012 Sep 15;189(6):2689-95 [PMID: 22956760]
  61. Thorax. 2002 Mar;57(3):212-6 [PMID: 11867823]
  62. Front Cell Infect Microbiol. 2017 Apr 06;7:104 [PMID: 28428948]
  63. Support Care Cancer. 2010 May;18(5):529-41 [PMID: 20191292]
  64. Cancer Res. 2000 Dec 15;60(24):6950-7 [PMID: 11156395]
  65. Pharmacol Res Perspect. 2017 Mar 10;5(2):e00303 [PMID: 28357129]
  66. J Leukoc Biol. 2011 Oct;90(4):771-6 [PMID: 21712395]
  67. J Mol Biol. 2008 Apr 4;377(4):1053-66 [PMID: 18295791]
  68. Sci Rep. 2017 Jun 13;7(1):3409 [PMID: 28611461]

Grants

  1. MOP-111012/CIHR
  2. RGPIN436250-13/Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
  3. Discovery Grant 3180/Cystic Fibrosis Canada

Word Cloud

Created with Highcharts 10.0.0NETosisanthracyclinescancerusedcellsuppressdrugextracellularNETsregulatoryeffectsdrugsstudiesdeathabilitydiseasesNADPH-independentneutrophilsalterdosesneitherdexrazoxaneNeutrophiltrapscytotoxicDNA-proteincomplexesplaypositivenegativerolescombatinginfectioninflammationorgandamageautoimmunitysepsisHoweverclinicallyclearlyestablishedSeveralrecenthighlightrelevancepromotingmetastasisscreened126compoundsbelonging39classescommonlytreatingblooddisordersshowegepirubicindaunorubicindoxorubicinidarubicinconsistentlyoxidase-dependenttypeshumanexvivointercalatingpropertyanthracyclinemayenoughtranscriptioninitiationleadinhibitionNotablyinhibitoryproductionreactiveoxygenspeciesnecessaryantimicrobialfunctionsinduceapoptoticThereforemajorclasssuppressescardioprotectiveagentlimitingsideaffectHencecorrecttogetherconsideredtherapeuticcandidatesuppressingunwantedNET-relatedAnthracyclinesSuppressOxidase-Dependent-IndependentHumanNeutrophilsDNA-metabolisminhibitorsNox-dependentscreeningneutrophiltrapNET

Similar Articles

Cited By (19)