Monitoring of Low-Intensity Exposures via Luminescent Bioassays of Different Complexity: Cells, Enzyme Reactions, and Fluorescent Proteins.

Nadezhda S Kudryasheva, Ekaterina S Kovel
Author Information
  1. Nadezhda S Kudryasheva: Institute of Biophysics, Federal Research Center "Krasnoyarsk Science Center, Russian Academy of Sciences, Siberian Branch", Krasnoyarsk 660036, Russia. n-qdr@yandex.ru. ORCID
  2. Ekaterina S Kovel: Institute of Biophysics, Federal Research Center "Krasnoyarsk Science Center, Russian Academy of Sciences, Siberian Branch", Krasnoyarsk 660036, Russia. ORCID

Abstract

The current paper reviews the applications of luminescence bioassays for monitoring the results of low-intensity exposures which produce a stimulative effect. The impacts of radioactivity of different types (alpha, beta, and gamma) and bioactive compounds (humic substances and fullerenols) are under consideration. Bioassays based on luminous marine bacteria, their enzymes, and fluorescent coelenteramide-containing proteins were used to compare the results of the low-intensity exposures at the cellular, biochemical, and physicochemical levels, respectively. High rates of luminescence response can provide (1) a proper number of experimental results under comparable conditions and, therefore, proper statistical processing, with this being highly important for "noisy" low-intensity exposures; and (2) non-genetic, i.e., biochemical and physicochemical mechanisms of cellular response for short-term exposures. The results of cellular exposures were discussed in terms of the hormesis concept, which implies low-dose stimulation and high-dose inhibition of physiological functions. Dependencies of the luminescence response on the exposure time or intensity (radionuclide concentration/gamma radiation dose rate, concentration of the bioactive compounds) were analyzed and compared for bioassays of different organization levels.

Keywords

References

  1. Environ Sci Pollut Res Int. 2015 Jan;22(1):155-67 [PMID: 25146119]
  2. Chemistry. 2013 Jun 24;19(26):8466-72 [PMID: 23670851]
  3. Int J Mol Sci. 2019 May 10;20(9): [PMID: 31083407]
  4. Biochemistry. 1993 Feb 9;32(5):1212-8 [PMID: 8448132]
  5. Photochem Photobiol. 2017 Mar;93(2):536-540 [PMID: 27645453]
  6. Eur Respir Rev. 2016 Jun;25(140):124-9 [PMID: 27246588]
  7. Chemosphere. 2010 Aug;80(9):965-71 [PMID: 20591469]
  8. Int J Radiat Biol. 1992 Mar;61(3):335-43 [PMID: 1347066]
  9. Free Radic Biol Med. 2000 Jul 1;29(1):26-33 [PMID: 10962202]
  10. Tsitologiia. 2007;49(5):395-420 [PMID: 17654827]
  11. J Environ Radioact. 2017 Oct;177:261-265 [PMID: 28728127]
  12. Science. 2003 Oct 17;302(5644):376-9 [PMID: 14563981]
  13. J Photochem Photobiol B. 2008 Aug 21;92(2):117-22 [PMID: 18602272]
  14. Environ Monit Assess. 2013 Jul;185(7):5909-16 [PMID: 23151839]
  15. J Environ Radioact. 2016 Jun;157:131-5 [PMID: 27035890]
  16. Science. 1996 Sep 6;273(5280):1392-5 [PMID: 8703075]
  17. J Hazard Mater. 2012 Jul 30;225-226:114-23 [PMID: 22626628]
  18. Oxid Med Cell Longev. 2017;2017:4586068 [PMID: 29204247]
  19. Photochem Photobiol Sci. 2007 Jan;6(1):35-40 [PMID: 17200734]
  20. Crit Rev Toxicol. 2013 Aug;43(7):580-606 [PMID: 23875765]
  21. Microb Cell. 2014 Apr 23;1(5):145-149 [PMID: 28357236]
  22. J Photochem Photobiol B. 2006 Apr 3;83(1):77-86 [PMID: 16413195]
  23. Trends Biotechnol. 2004 Jun;22(6):295-303 [PMID: 15158059]
  24. Int J Epidemiol. 2012 Feb;41(1):24-32 [PMID: 22296988]
  25. Luminescence. 2016 Sep;31(6):1283-9 [PMID: 26864478]
  26. Anal Bioanal Chem. 2017 Jul;409(18):4377-4381 [PMID: 28527000]
  27. Anal Bioanal Chem. 2007 Mar;387(6):2009-16 [PMID: 17237922]
  28. Microb Ecol. 2008 Nov;56(4):615-24 [PMID: 18437449]
  29. J Environ Radioact. 2017 Apr;169-170:64-69 [PMID: 28086187]
  30. ISA Trans. 1981;20(1):29-33 [PMID: 7251338]
  31. Photochem Photobiol. 2017 Mar;93(2):579-589 [PMID: 27935056]
  32. Talanta. 2017 Aug 1;170:425-431 [PMID: 28501192]
  33. Biochemistry (Mosc). 2015 Jun;80(6):733-44 [PMID: 26531018]
  34. Br J Radiol. 2005 Jan;78(925):3-7 [PMID: 15673519]
  35. Clin Microbiol Rev. 2004 Oct;17(4):840-62, table of contents [PMID: 15489351]
  36. Anal Bioanal Chem. 2018 Oct;410(26):6837-6844 [PMID: 30062510]
  37. Bioorg Khim. 2012 May-Jun;38(3):342-50 [PMID: 22997706]
  38. J Photochem Photobiol B. 2010 Oct 5;101(1):103-8 [PMID: 20678944]
  39. React Oxyg Species (Apex). 2016;1(1):9-21 [PMID: 29707643]
  40. Photochem Photobiol. 2017 Mar;93(2):389-404 [PMID: 27748947]
  41. Radiat Environ Biophys. 2003 Oct;42(3):189-92 [PMID: 13680259]
  42. J Environ Radioact. 2013 Jun;120:19-25 [PMID: 23410594]
  43. J Environ Radioact. 2019 Nov;208-209:106035 [PMID: 31499317]
  44. Biochem Biophys Rep. 2016 Nov 09;9:1-8 [PMID: 28955983]
  45. Anal Bioanal Chem. 2011 Apr;400(2):343-51 [PMID: 21336798]
  46. Meat Sci. 2014 Nov;98(3):383-91 [PMID: 25042241]
  47. Anal Chim Acta. 2008 Feb 4;608(1):2-29 [PMID: 18206990]
  48. J Environ Radioact. 2014 Jul;133:5-9 [PMID: 23664231]
  49. Luminescence. 2000 Jan-Feb;15(1):51-8 [PMID: 10660666]
  50. Electromagn Biol Med. 2015;34(2):160-6 [PMID: 26098530]
  51. Comb Chem High Throughput Screen. 2015;18(10):952-9 [PMID: 26377542]
  52. Biochemistry. 2009 Nov 10;48(44):10486-91 [PMID: 19810751]
  53. Toxicol Sci. 2001 Aug;62(2):330-8 [PMID: 11452146]
  54. FEBS Lett. 2003 Nov 6;554(1-2):184-8 [PMID: 14596937]
  55. Protein Sci. 2011 Sep;20(9):1509-19 [PMID: 21714025]
  56. Photochem Photobiol. 2013 Jul-Aug;89(4):849-55 [PMID: 23495829]
  57. Water Res. 2011 Oct 1;45(15):4311-40 [PMID: 21722938]
  58. Biomed Pharmacother. 2018 May;101:74-86 [PMID: 29477474]
  59. Chemosphere. 2013 Jan;90(4):1348-58 [PMID: 22980957]
  60. Cancer Epidemiol Biomarkers Prev. 2005 Aug;14(8):1847-50 [PMID: 16103423]
  61. Ecotoxicol Environ Saf. 2011 May;74(4):866-73 [PMID: 21176963]
  62. Science. 2010 Oct 22;330(6003):460-1 [PMID: 20966241]
  63. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jan 1;100:171-5 [PMID: 22795580]
  64. Anal Bioanal Chem. 2013 Apr;405(10):3351-8 [PMID: 23392408]
  65. Anal Bioanal Chem. 2014 May;406(12):2965-74 [PMID: 24618986]
  66. J Nucl Med Technol. 2015 Dec;43(4):242-6 [PMID: 26584616]
  67. J Environ Radioact. 2015 Apr;142:68-77 [PMID: 25644753]
  68. J Photochem Photobiol B. 2016 Sep;162:318-323 [PMID: 27400455]
  69. Annu Rev Biochem. 1967;36:727-56 [PMID: 18257736]
  70. J Environ Radioact. 2011 Apr;102(4):407-11 [PMID: 21388726]
  71. Ecotoxicol Environ Saf. 2002 Oct;53(2):221-5 [PMID: 12568457]
  72. Int J Mol Sci. 2018 Sep 21;19(10): [PMID: 30248927]
  73. Sensors (Basel). 2010;10(12):11287-300 [PMID: 22163526]
  74. Exp Hematol. 2007 Apr;35(4 Suppl 1):37-46 [PMID: 17379086]
  75. J Photochem Photobiol B. 2007 Sep 25;88(2-3):131-6 [PMID: 17716903]
  76. J Photochem Photobiol B. 2012 Dec 5;117:164-70 [PMID: 23123596]
  77. Int J Mol Sci. 2018 Mar 10;19(3): [PMID: 29534471]
  78. Sci Total Environ. 2018 Jun 1;626:1295-1309 [PMID: 29898537]
  79. Photochem Photobiol. 2019 Mar;95(2):563-571 [PMID: 30059157]
  80. Photochem Photobiol Sci. 2007 Jan;6(1):67-70 [PMID: 17200739]
  81. Environ Monit Assess. 2015 Mar;187(3):89 [PMID: 25663400]
  82. Environ Toxicol Chem. 2011 May;30(5):1013-7 [PMID: 21309025]
  83. Eur Biophys J. 2012 Jun;41(6):535-44 [PMID: 22526464]

Grants

  1. Program: 'Nanostructures: physics, chemistry, biology, technological basis'/PRAN-32
  2. 18-29-19003/RFBR
  3. 18-44-240004, 18-44-242002/RFBR-Krasnoyarsk Regional Foundation

MeSH Term

Bacteria
Environmental Exposure
Environmental Monitoring
Fullerenes
Humic Substances
Luminescence
Luminescent Measurements
Luminescent Proteins
Radiation, Ionizing
Spectrometry, Fluorescence

Chemicals

Fullerenes
Humic Substances
Luminescent Proteins
fullerenol

Word Cloud

Created with Highcharts 10.0.0exposuresluminescenceresultslow-intensitybioassaysbioactivecompoundscellularresponsedifferentBioassaysenzymesfluorescentbiochemicalphysicochemicallevelsproperhormesisradiationcurrentpaperreviewsapplicationsmonitoringproducestimulativeeffectimpactsradioactivitytypesalphabetagammahumicsubstancesfullerenolsconsiderationbasedluminousmarinebacteriacoelenteramide-containingproteinsusedcomparerespectivelyHighratescanprovide1numberexperimentalcomparableconditionsthereforestatisticalprocessinghighlyimportant"noisy"2non-geneticiemechanismsshort-termdiscussedtermsconceptimplieslow-dosestimulationhigh-doseinhibitionphysiologicalfunctionsDependenciesexposuretimeintensityradionuclideconcentration/gammadoserateconcentrationanalyzedcomparedorganizationMonitoringLow-IntensityExposuresviaLuminescentDifferentComplexity:CellsEnzymeReactionsFluorescentProteinsantioxidantactivitybacterialcellsproteinfactors

Similar Articles

Cited By