Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells.

Beerend H J Winkelman, Marcus H C Howlett, Maj-Britt Hölzel, Coen Joling, Kathryn H Fransen, Gobinda Pangeni, Sander Kamermans, Hiraki Sakuta, Masaharu Noda, Huibert J Simonsz, Maureen A McCall, Chris I De Zeeuw, Maarten Kamermans
Author Information
  1. Beerend H J Winkelman: Netherlands Institute for Neuroscience, Amsterdam, the Netherlands. ORCID
  2. Marcus H C Howlett: Netherlands Institute for Neuroscience, Amsterdam, the Netherlands. ORCID
  3. Maj-Britt Hölzel: Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
  4. Coen Joling: Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
  5. Kathryn H Fransen: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America.
  6. Gobinda Pangeni: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America.
  7. Sander Kamermans: Polder Animation, Utrecht, the Netherlands. ORCID
  8. Hiraki Sakuta: National Institute for Basic Biology, Okazaki, Japan.
  9. Masaharu Noda: National Institute for Basic Biology, Okazaki, Japan.
  10. Huibert J Simonsz: Netherlands Institute for Neuroscience, Amsterdam, the Netherlands. ORCID
  11. Maureen A McCall: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America.
  12. Chris I De Zeeuw: Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
  13. Maarten Kamermans: Netherlands Institute for Neuroscience, Amsterdam, the Netherlands. ORCID

Abstract

Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies.

References

  1. J Physiol. 2010 Sep 1;588(Pt 17):3243-53 [PMID: 20624793]
  2. Neuron. 2011 Sep 22;71(6):974-94 [PMID: 21943597]
  3. J Neurophysiol. 2007 Nov;98(5):3023-33 [PMID: 17881478]
  4. Front Neuroanat. 2017 Oct 24;11:92 [PMID: 29114208]
  5. Br J Pharmacol. 1995 Aug;115(7):1163-8 [PMID: 7582539]
  6. JAMA Ophthalmol. 2014 Jun;132(6):761-8 [PMID: 24525626]
  7. Hum Mol Genet. 2015 Nov 1;24(21):6229-39 [PMID: 26310623]
  8. Neuron. 2016 Jan 6;89(1):177-93 [PMID: 26711119]
  9. Invest Ophthalmol Vis Sci. 2003 Jan;44(1):378-84 [PMID: 12506099]
  10. Nature. 2013 Aug 8;500(7461):168-74 [PMID: 23925239]
  11. Neural Comput. 2004 Aug;16(8):1661-87 [PMID: 15228749]
  12. Biol Cybern. 1984;50(2):119-34 [PMID: 6722208]
  13. PLoS One. 2008 Feb 06;3(2):e1533 [PMID: 18253481]
  14. Am J Physiol Cell Physiol. 2012 Mar 1;302(5):C821-33 [PMID: 22135213]
  15. Trends Neurosci. 2003 Jul;26(7):379-85 [PMID: 12850434]
  16. J Neurosci. 2004 Dec 8;24(49):11182-92 [PMID: 15590935]
  17. Vis Neurosci. 2005 Sep-Oct;22(5):561-8 [PMID: 16332266]
  18. Vis Neurosci. 2005 Sep-Oct;22(5):649-59 [PMID: 16332276]
  19. Prog Retin Eye Res. 2015 Mar;45:58-110 [PMID: 25307992]
  20. J Pharmacol Exp Ther. 1998 Aug;286(2):709-17 [PMID: 9694925]
  21. Vision Res. 2004 Dec;44(28):3289-96 [PMID: 15535996]
  22. Front Syst Neurosci. 2012 Feb 24;6:8 [PMID: 22383900]
  23. Br J Ophthalmol. 2008 Feb;92(2):236-40 [PMID: 18227204]
  24. PLoS One. 2014 Jan 28;9(1):e86253 [PMID: 24489706]
  25. J Neurophysiol. 2006 Mar;95(3):1588-607 [PMID: 16339008]
  26. Curr Opin Neurobiol. 2002 Aug;12(4):405-10 [PMID: 12139988]
  27. Invest Ophthalmol Vis Sci. 1998 Nov;39(12):2443-9 [PMID: 9804152]
  28. Vision Res. 1972 Feb;12(2):183-93 [PMID: 5033683]
  29. Ann N Y Acad Sci. 2002 Apr;956:64-74 [PMID: 11960794]
  30. Am J Hum Genet. 2012 Feb 10;90(2):331-9 [PMID: 22325362]
  31. J Neurosci. 2014 Apr 30;34(18):6334-43 [PMID: 24790204]
  32. Front Neural Circuits. 2014 Sep 04;8:104 [PMID: 25237297]
  33. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  34. Strabismus. 2009 Oct-Dec;17(4):158-64 [PMID: 20001510]
  35. J Neurosci. 2012 Mar 7;32(10):3321-32 [PMID: 22399754]
  36. J Neurophysiol. 2014 Sep 15;112(6):1491-504 [PMID: 25008417]
  37. J Physiol. 2012 May 15;590(10):2501-17 [PMID: 22393249]
  38. Cell. 2013 Sep 12;154(6):1188-9 [PMID: 24034242]
  39. Invest Ophthalmol Vis Sci. 2013 Oct 23;54(10):6973-81 [PMID: 24084093]
  40. PLoS One. 2009;4(1):e4320 [PMID: 19177171]
  41. Neuron. 2006 Apr 20;50(2):247-59 [PMID: 16630836]
  42. Eur J Neurosci. 2000 Jul;12(7):2367-75 [PMID: 10947815]
  43. J Comp Neurol. 1989 Jul 1;285(1):18-37 [PMID: 2666456]

MeSH Term

Animals
Child, Preschool
Disease Models, Animal
Eye Diseases, Hereditary
Female
Genetic Diseases, X-Linked
Humans
Infant
Male
Mice, Knockout
Myopia
Night Blindness
Nystagmus, Congenital
Retinal Ganglion Cells

Word Cloud

Created with Highcharts 10.0.0nobeyemovementsnystagmusoscillatingCSNBcellsfrequencycongenitalmiceganglionGCsoscillationsretinalassociatedstationarynightblindnessresultspatientsanimalmodelONoscillatedsynchronizedlightpresentpharmacologicalmanipulationsalsoreducedoscillationCongenitalinvoluntarysmallcommonlythoughtoriginateaberrantinteractionsbrainstemnucleifovealcorticalpathwaysinvestigatedwhetherprimarydeficitsretinafoundwelllackedfunctionalnyctalopinproteinNYXnyxbipolarBCssynapsephotoreceptorsshowed4-7Hzdirection-selectiveDSGCsdetectglobalmotionprojectaccessoryopticsystemAOSeyesdarkindividualasynchronouslybecamestimulationLikewisepatientcontrastRetinalgeneticblockedGCeliminatedconcludelikelyON-DCGCscausepropertiessimilarhumansshowmousefirstformpavingwaydevelopmenttherapeuticstrategiesNystagmusoriginatessynchronouslyfiring

Similar Articles

Cited By